
Introduction

Software READ THIS FIRST
Notes for Sun™ tUNIX Release 3.4

. lail liE iii BlI& i~!iii

Release 3.4 incorporates fixes to bugs found in previous releases. It also includes the new SunPro optional software,
enhancements to the Sun View, graphics, and networking software, a kernel enhancement, and additions to the
/ etc/termcap file.

Getting Help
Should you have any problems while installing or using your system, call Sun Technical Support at 800-USA-4SUN
(800-872-4786). From Canada, call 800-225-2615. Have your system's model and serial numbers ready to give the
dispatcher. Questions also can be sent by electronic mail to sun!hotline. Your mail should include your name, com­
pany, phone number, system model number, and serial number, a description of your problem, and software release
number. This service is provided at no additional charge for systems under warranty or covered by a support agree­
ment. If you have questions about Sun's support services or your shipment, call your sales representative.

Notes for the 3.4 Release

Un install Unavailable in This Release

The 3.4 release does not provide uninstall capabilities. Therefore, it is strongly advised that you do a full backup
of your system before installing Release 3.4, in case you need to back out of 3.4 and reinstall a prior version of
the operating system.

Manual Pages Attached

The 3.4 manual page set is attached to this Read This First. These man pages were intended to be the last part of
Appendix C of the Release 3.4 Manual/or the Sun Workstation. Please insert the man pages into your Release
3.4 manual after the tabl~s in Appendix C.

SunPro Installation Problem

SunPro installation fails on standalones and on heterogeneous servers. If you try to install SunPro as follows:

the system tries to install the software, but ultimately fails, giving messages such as

For this release, you should do the work of the script manually or fix it up for the local environment

1 Rev A of 18 June 1987 Part Number 800-1936-11

2 Release 3.4 READ TIllS FIRST

For a Sun-2 or Sun-3 standalone system, do the following:

1. Bring the system down with the shutdown command.

2 Change your working directory to the SunPro directory by entering:

3. Save the files that will be overwritten, as follows:

4. Install 3.4 SunPro.

5. Then, do the following to move the SunPro files into their appropriate directories:

6. If the system you are installing contains manual pages, enter the following:

If you are installing SunPro for a heterogeneous server system, you should do the next procedure twice, once for
each architecture type. (Sun-2 architecture type is MC68010; Sun-3 architecture is MC68020.)

1. Bring the system down with the shutdown command.

2. Change the working directory to the SunPro directory, as follows:

where arch_type is either 68010 or 68020.

3. Save the files that will be overwritten by entering:

Rev A of 18 June 1987 Part Number 800-1936-11

Software READ THIS FIRST Notes for Sun™ tUNIX Release 3.4 3

4. Install 3.4 SunPro.

5. Do the following to move the SunPro files to their proper directories:

6. If the system you are installing contains manual pages, do the following:

Installing Servers

When installing your 3.2 tape set, you must load the optional networking tools and programs if you are installing
a server. Otherwise, the server will be unable to run the Yellow Pages, and diskless clients will be unable to
boot.

Changes to MAKEDEV

After you have finished upgrading to Release 3.4 and rebooted your system, you have to make two changes to the
file / dev /MAKEDEV. The pennissions on the file are set incorrectly and must be changed. Also, the file con­
tains an extra copy of the MAKEDEV script. Before running MAKEDEV to create device entries, you need to edit
the script and remove the second copy.

Follow the next instructions to make these changes; do this for both servers and clients.

1. Become superuser.

2. Type

to change the pennissions on the file from r--r--r-- to -rwxr-xr-x.

3. Edit / dev /MAKEDEV, using your preferred editor.

4. Find the second occurence of the MAKEDEV script, which starts on Line 398 of the file. (You can use the
"set number" command in vi to display line numbers.)

5. Delete the text from this line to the end of the file.

To Use CGI, You Must Load Suntools Libraries

An unintentional dependency was added into the SunCGI library, which now requires that the Suntools library
also be linked. Use the following libraries for the linking of SunCGI programs with this release:

Rev A of 18 June 1987 Part Number 800-1936-11

4 Release 3.4 READ TInS FIRST

-lcgi -lsuntool-Isunwindow -lpixrect-1m

If -lsuntool is not included in the loading phase of the program, the loader will flag an undefined reference to
"window -8et" This routine is only referenced when you use SuneGI in conjunction with canvases.

This dependency will be removed in the next release.

Remotely Installing 3.4 on a Tapeless Server

If you plan to do a remote installation of Release 3.4 on a tapeless server, you should run ifconfig before
using the remote drive. Refer to the section on ifconfig in Chapter 4 of Release 3.4 Manual/or the Sun
Workstation and the if conf ig(8) manual page for more infonnation about this command.

Configuring Systems with High-Resolution Monochrome Monitors

If you have a system such as a Sun-3/260, with a high resolution (1600 x 1280) monochrome monitor and one or
more color monitors, you should configure the EEPROM so that the monochrome monitor or one of the serial
ports is the console device. If you make a color monitor the console, the high resolution monochrome monitor
may be unusable.

Obtaining Pre-formatted Manual Pages

If you want to maintain fonnatted manual pages on your system, you should do the following:

1. Completely install Release 3.4 and reconfigure the kernel, as described in Chapters 2 and 3 of Release 3.4
Manual/or the Sun Workstation.

2. Ensure that you have 8 Mbytes of available disk space.

3. Run catman(8). catman fonnats the man pages and builds the whatis database.

For more infonnation about catman(8) and whatis(1), refer to their respective man pages.

Known Bug in Release 3.4 Software

The following bug is known to occur in Release 3.4. It is not documented in the release manual.

Lockscreen Bug

The -e option to the SunView lock screen program is broken. This option is supposed to enable you to exit
the SunView environment that is running lockscreen without returning to SunView. Instead, when you
invoke the I EXit Desktop) button, the tools are destroyed but the Suntools program is not exited. Also, when run­
ning multiple instances of Suntools on different screens, invoking I EXit DeSktop) crashes the kernel.

Known Bug in Release 3.4 Manual

The following bug was reported as fixed in Release 3.4 Manual/or the Sun Workstation, but actually has not been
fixed.

Problems with Textedi t

Textedi t still incorrectly sizes windows when you use the -Ww flag.

Additions and Changes to the Release 3.4 Manual

The following updates were made to the release software after the Release 3.4 Manual/or the Sun Workstation was
printed.

Rev A of 18 June 1987 Part Number 800-1936-11

Additions to Chapter 6, Bug Fixes Since Release 3.3

Language-Related Bug Fixes

Incorrect Evaluation of Bit Fields

Software READ THIS FIRST Notes for Sun™ tUNIX Release 3.4 5

In Release 3.2, cc incorrectly evaluated a bit field compared against an integer constant with the value of O. This
has been fixed in Release 3.4.

C Compiler Lost Track of Register Variables

The C compiler sometimes lost track of register variables after function calls. For example, if you declared a pro­
gram register variable a and assigned it to a register, and then, in another function, declared another register vari­
able b, the compiler would incorrectly assign b to the same register. The value of a would then be lost. This
problem has been fixed in Release 3.4.

SunView Bug Fixes

TEXTSW INSERTION_POINT Takes Effect Immediately

In previous releases, if you set the TEXTSW _ INSERTION_POINT attribute, the caret did not display in the
new location until the user moved the mouse cursor out of, then back into the text subwindow. The caret now
jumps to the new position immediately (though, as before, if the new location is not in the window the caret will
not be visible unless you call textswyossibly_normalize ()).

cmdtool Handles Child's Exit Correctly

In Release 3.2, if you 'Quit' a cmdtool while still running a program from its shell (for example, listing a long
file using cat), the program would still be running. Uyou then started a new cmdtool, if the new cmdtool
happened to use the same pty as the previous one you 'Quit,' then the new cmdtool would get a SIGHUP sig­
nal from the previous shell and it would exit. Now when you 'QUit' from cmdtool, the cmdtool sends a
S IGHUP signal to make the child exit, so a new invocation of cmdtool should not encounter the previous
cmdtool 's children.

Notes for the 3.2 FCS Release

Sysdiag and the EEPROM

If you use sysdiag to test the FPA and the 68881, it may be necessary to alter the EEPROM to ensure that the
68881 is configured in the EEPROM. See Installing Unix on the Sun Workstation for details on EEPROM pro­
gramming.

Source to Sun View Examples Is Available

The source for most of the programs in the "Example Programs" appendix to the Release 3.2 SunView
Programmer's Guide (800-1345) is available in /usr / src/ sun/ suntool/ examples. The source to
seln_demo, a sophisticated selection monitor from the Sun View System Programmer's Guide (800-1342), is
also included. This directory is installed along with source for some of the Sun View programs and demos if you
select SunView and Demo Program source from Setup's Optional Software form. (If you are upgrading to 3.2,
answery to install Suntools_source.) Some of the examples are slightly improved from the versions in the
manual.

Subwindow Layout Policy Changed

In Release 3.0, when a frame was made smaller, either by stretching the frame down or from a call to
window_setO, a bug sometimes caused the frame border to not be drawn.

Rev A of 18 June 1987 Part Number 800-1936-11

6 Release 3.4 READ TIllS FIRST

In Release 3.2 and subsequent releases, the window layout management software now tries to preserve the frame
border by resizing subwindows when the frame's size is changed. That is, when a frame is made smaller,
subwindows that cross the frame border are resized to fit within the frame. When a frame is enlarged, subwin­
dows that are smaller than their requested size are resized (up to their requested size) to meet the frame border.
Here "requested size" is the subwindow's initial size, or the size the subwindow was altered to.

This bug fix restores the behavior of Release 2.0 SunWindows.

Games

The following games and associated files are no longer supplied:

battlestar
ching
craps
moo
monop
quiz
rain
robots
sail
sail. log
snake
snscore
trek
worm
worms

lib/battlestar.log
lib/ching.d
lib/quiz.k
lib/robots_roll

Known Bugs in Release 3.2

Disk Errors on Sun-3/200 Series Workstations

Disk errors of the following fonn may occur occasionally:

In general, these errors are not fatal. The message is usually one of the following:

Rev A of 18 June 1987 Part Number 800-1936-11

Software READ TIllS FIRST Notes for Sun™ tUNIX Release 3.4 7

For example:

Sun-2 Abort Sequence Bug

If you abort the boot sequence on a Sun-2/l00 or 120, attempting to boot from tape may result in the output of a
long series of capital Y's until the boot is again aborted. The workaround is to enter kl at the boot PROM
prompt(>).

This bug seems to result from the keyboard UART being left in an improper state and therefore will not be seen
on machines using tenninals rather than Sun monitors/keyboards.

VME-to-VME Adapters in a Sun-3/110

When a VME-to-VME adapter (Sun Option 160A) is used to install non-Sun hardware into a Sun-3/l10, the
adapter must have a part number of 501-1191-01 or higher. If the adapter is Sun part number 501-1059-01 or
earlier version of Sun Option 160A, you may not be able to boot the system to 501-1191-01.

The Sun VME SCSI Controller that is mounted in the VME-to-VME adapter must be 501-1138-01 or higher. An
earlier version of the Sun VME SCSI Controller (part number 501-1149-01 or higher) used in other Sun products
(Sun-2/130/160 and Sun-3/l60/180) will cause the system to not boot.

Formatting SMD Disks

The format command now reads the defect list and is therefore recommended instead of the fix command.

Installing a File Server as a Remote Host

If you plan to use the file selVer you are installing as a remote host for remote installation of another workstation,
you will need an additional 5 Mbytes of free space in one of your file systems, for example, / pub.

Booting from SMD disks

When booting mini-UNIX on a VME-based workstation from a Xylogics disk controller jumpered for 20-bit
addressing, the kernel may panic with the following error:

~

This happens when booting for the first time. When booted a second time (without reloading mini-UNIX), the
workstation should boot without any problems.

Normally pins JM on the controller are jumpered for 24-bit addressing.

Rev A of 18 June 1987 Part Number 800-1936-11

8 Release 3.4 READ TIllS FIRST

Setup Client Cards

Set up does not have client cards for Sun models 2/100, 3/110, and 3/lxO. Use the 2/120 card for the 2/100, and
one of the 3/160 cards for the 3/110 and 3/lxO series.

Note that the cards for the color workstations default to a 24-megabyte swap area.

Using vt100 Consoles

Using tenninal type "vt100" during Setup will result in a core dump. Use tenninal type "ansi."

Using echo -n in Bourne Shell Scripts

If you specify System V.behavior (for example, PATH=/usr / Sbin: $PATH), shell scripts that contain lines
such as

will echo

with a trailing newline. Specify a path without /usr / Sbin to get the 4.2BSD behavior.

Additions and Changes to Release 3.2 and Later Documents

The following are updates to Release 3.2 documentation.

Languages Documentation

Partial Optimization

Page 4 of the Floating-Point Programmer's Guide (800-1552-01) refers to partial optimization as -po Change
this to - P, because lowercase p is used to specify profiling.

CPU Board Level

The FP A is intended to be used with CPU's with part numbers 501-1163 or 501-1164. You can use
mc68881version(8) to test the CPU board level. If the 68881 is described as "A79J," the CPU board was not
properly updated prior to the installation of the FPA.

Graphics Documentation

GP Example Source

The Software Interface Manual/or the Sun Graphics Processor includes example applications for the GP. They
are described in Appendix A of that manual. Machine-readable code is included in / u s r / s r c / sun / demo / GP
1 /VIEWPORT. There are two errors in the source files for this package.

In box. c, the routine ini t _gp should use the gpl_ d function instead of ioctl 's to get the minor device
number and the static block.

Rev A of 18 June 1987 Part Number 800-1936-11

Software READ TIllS FIRST Notes for Sun™ tUNIX Release 3.4 9

(

Change

to

GP fd = gpl_d(pw->pw-pixrect)->ioctl_fdi
if «ioctl(GP_fd, GPIIO_GET_STATIC_BLOCK, &GP_statblk) «0) I I

(ioctl(GP_fd, GPIIO_GET_TRUMINORDEV, &GP_mindev) « 0»
{

perror("")i
exit(O)i

GP_fd = gpl_d(pw->pw_clipdata->pwcd-prmulti)->ioctl_fd;
GP_mindev = gpl_d(pw->pw_clipdata->pwcd-prmulti)->minordevi
if «GP_statblk = gpl_get_static_block(GP_fd» « 0)

{

fprintf(stderr,"Cannot get static blockO);
exit(O);

In gpbuf. c, the gpb pointer is accessed before it has been initialized.

Move the lines

gpb->gpb_gfd = gpl_d(pw->pw_clipdata->pwcd-prmulti)->ioctl_fdi
gpb->gpb_mindev = gpl_d(pw->pw_clipdata->pwcd-prmulti)->minordevi
if «gpb->gpb_sbindex = gpl_get_static_block(gpb->gpb_gfd» « 0)

error ("Create_VP: cannot acquire GP static blockO, 0, 0);

so they appear after the statement

gpb = ObjAddr(gpbobj, GPDATA)i

Sun Woriestation is a registered trademark of Sun Microsystems. Inc.
t UNIX is a trademark of AT&T Bell Laboratories.

]

Rev A of 18 June 1987 Part Number 800-1936-11

, " ... ::. »". -:·X-:": -.':": ."" . '. ,'. ~ " ..

Reference Manual Pages

CLEAR(I)

NAME
clear - clear screen

SYNOPSIS
clear

DESCRIPTION

USER COMMANDS CLEAR(I)

Clear clears your screen if this is possible. It looks in the environment for the terminal type and then in
letcltermcap to figure out how to clear the screen.

FILES
letc/termcap terminal capability data base

Sun Release 3.4 Last change: 12 February 1985 49

USER COMMANDS

NAME
clear _ colonnap - make console text visible

SYNOPSIS
clear _ colonnap [-DO] [-r framebuffer]

DESCRIPTION
Clear _ colormap ensures that text displayed on the console is visible. If no options are specified it clears
the frame buffer and initializes the first two colonnap entries. If the frame buffer has an overlay plane it is
also cleared and the overlay enable plane is set so that the entire overlay plane is displayed

OPTIONS
-0 Do not clear the frame buffer or overlay plane.

-0 Do not clear the overlay plane or modify the overlay enable plane.

-f framebuffer
Operate on frame buffer device framebuffer instead of the default, ldev/tb.

50 Last change: 16 January 1987 Sun Release 3.4

COMPRESS (1) USER COMMANDS COMPRESS (1)

Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for -v.)

-- not a regular file: unchanged
When the input file is not a regular file, (e.g. a directory), it is left unaltered.

-- has xx other links: unchanged
The input file has links; it is left unchanged. See In(l) for more information.

-- file unchanged
No savings are achieved by compression. The input remains uncompressed.

SEE ALSO

BUGS

A Technique for High Performance Data Compression, Terry A. Welch, IEEE Computer, vol. 17, no. 6
(June 1984), pp. 8-19.

compact(l), pack(l)

Although compressed files are compatible between machines with large memory, -b12 should be used for
file transfer to architectures with a small process data space (64KB or less).

compress should be more flexible about the existence of the :z suffix.

Sun Release 3.4 Last change: 17 July 1986 65

CP(l) USER COMMANDS CP(t)

NAME
cp - copy files

SYNOPSIS
cp [-i] [-p] [-rR] filet file2

cp [-i] [-p] [-rR] file ••• directory

DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 are preserved if it already existed; the mode of the
source file is used otherwise.

In the second form, one or more files are copied into the directory with their original file-names.

Cp refuses to copy a file onto itself.

OPTIONS
-i Interactive: prompt the user with the name of the file whenever the copy would overwrite an old

file. Answering with 'y' means that cp should go ahead and copy the file. Any other answer will
prevent cp from overwriting the file.

-p Preserve: attempt to preserve (duplicate) in its copies the modification times and modes of the
source files, ignoring the present umask.

-r
-R Recursive: if any of the source files are directories, cp copies each subtree rooted at that name; in

this case the destination must be a directory. In the case of a symbolic link, the link itself is not
replicated Instead, cp duplicates the contents of the file pointed to by the symbolic link.

EXAMPLES
To make a backup copy of goodies:

% cp goodies old. goodies

To copy an entire directory hierarchy:

% cp -r lusr/wendy/src lusr/wendylbackup

However, BEW ARE of a recursive copy like this one:

% cp -r lusr/wendy/src lusr/wendy/srclbackup
which keeps copying files until it fills the entire file system.

SEE ALSO

BUGS

66

cat(I), pr(I), mv(1), rcp(IC)

There should be an option to copy timestamps to the new files - for instance, when copying a whole
hierarchy from one file system to another file system, or when making a backup copy.

Last change: 13 November 1986 Sun Release 3.4

DD(l) USER COMMANDS

To read an EBCDIC tape blocked ten SO-byte EBCDIC card images per record into the ASCII file x:
tutorial% dd if=/dev/rmtO of=x ibs=800 cbs=8O conv=ascii,lcase

OD(I)

Note the use of raw magtape: dd is especially suited to I/O on the raw physical devices because it allows
reading and writing in arbitrary record sizes.

SEE ALSO
cP(1), tr(l V)

DIAGNOSTICS

BUGS

f+p records in(out): numbers of full and partial records read(written)

The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM Nov, 1968.
The ibm conversion, while less blessed as a standard, corresponds better to certain IBM print train conven­
tions. There is no universal solution.

The block and unblock options cannot be combined with the ascii, ebcdic or ibm. Invalid combinations
silently ignore all but the last mutually-exclusive keyword.

Sun Release 3.4 Last change: 23 September 1985 113

DEFAULTSEDIT(1) USER COMMANDS DEFAULTSEDIT (1)

NAME
defaultsedit, defaults _merge, defaults _from_input defaults _to _ indentpro, defaults_to _ rnailrc,
indentpro _ to_defaults, lockscreen _default, mailrc _to_defaults, scrolldefaults - window- and mouse-based
default parameters editor

SYNOPSIS
deraultsedit

DESCRIPTION
defaultsedit is a standard tool provided with the Sun View environment.

defaultsedit presents a convenient user interface for inspecting and setting default parameters. It can be
viewed as a replacement for the traditional UNIX defaultsedit to manipulate options to the programs
indent, mail and mailtool, stty, and defaultsedit, as well as the menu, scrollbar, text subwindow and tty
subwindow packages and the Sun View environment.

Any program or package which a user can customize by setting or changing a parameter could be written
such that it gets its options from the database manipulated through defaultsedit. For information on how to
do this see the chapter on the Defaults Database in the SunView System Programmer's Guide.

OPTIONS
defaultsedit accepts all of the generic tool arguments discussed in suntools(l).

SUBWINDOWS
defaultsedit consists of four subwindows. From top to bottom they are:

control contains the name of the category currently displayed, and buttons labeled SAVE, QUIT,
RESET, and EDIT ITEM. To change the category, click on the word CATEGORY with the
left mouse button, or use the menu that pops up when you click with the right mouse button.

message a small text subwindow where messages from defaultsedit are displayed.

parameters shows all current default parameter names with corresponding values. Clicking the left
mouse button over a parameter displays a help string in the message subwindow.

edit a small text subwindow which enables text editing of parameter values. This is useful for
very long text values, such as a long mailing list.

USING DEFAULTSEDIT

114

SAVE Saves the current values for all categories in your private database - that is, the .defaults
file in your home directory.

QUIT exits without saving any changes.

RESET resets the default parameters of the current category to the values in your private database.
This is useful if you change some values, then change your mind and want to restore the ori­
ginal values.

EDIT ITEM Pressing the right mouse button over the EDIT ITEM button brings up a menu with three
choices: COpy ITEM, DELETE ITEM and EDIT LABEL. Only text or numeric items can
be edited. Also, note that edits made using this menu will appear only in your private
defaults database, not in the master database. The three editing operations are described
below.

COPY ITEM Selecting COpy ITEM causes the current item to be duplicated. You can then edit both the
label and the value of the the newly created item. Only items with text or numeric values
can be copied in this way. COpy ITEM is useful when you want to change the number of
instances of a certain type of item - for example, to insert a new mail alias into your
defaults database.

DELETE ITEM
Selecting DELETE ITEM will delete the current item from your private database. It cannot
be permanently deleted if the corresponding node is present in the master database.

Last change: 27 January 1987 Sun Release 3.4

DEFAULTSEDIT(1) USER COMMANDS DEFAULTSEDIT(1)

EDIT LABEL

However, you can make it behave like an undefined node by giving it the special value
\255 UndefinetJ..255.

Selecting EDIT LABEL allows you to edit the label of the current item. When you select
EDIT LABEL, the label of the current item changes from bold to normal face. Then you
can select the label and edit it as a normal panel text item.

ENVIRONMENT
DEFAULTS_FILE

FILES

The value of this environment variable indicates the file from which Sun View defaults
are read. When it is undefined, defaults are read from the .defaults file in your horne
directory.

-I.defaults lusrllibl defaults/*.d
Note: A performance optirnzation may be enabled by setting the Private_only parameter in the Defaults
category. If this is set to True, only the user's private defaults file is consulted.

SEE ALSO

BUGS

Windows and Window-Based Tools: Beginner's Guide

The SunView System Programmer's Guide

Editing of choice items or categories is not supported by defaultsedit. Neither is editing of the master
defaults database - to add a new program to the master defaults database, you have to edit a master
defaults textfile.
Switching between certain categories may cause the database to be reread and over-write any changed
values. Therefore, using the "Save" button for each category changed is recommended

Sun Release 3.4 Last change: 27 January 1987 115

DELTA(l) USER COMMANDS DELTA(I)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
lusrlsccsJdelta [-r SID] [-s] [-n] [-g list] [-m [mrlist]] [-y [comment]] [-p] file •••

DESCRIPTION
Delta permanently introduces into the named secs file changes that were made to the file retrieved by
get(l) (called the g-file, or generated file).

Delta makes a delta to each named sees file. If a directory is named, delta behaves as though each file in
the directory were specified as a named file, except that non-Sees files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name of - is given, the standard input
is read (see WARNINGS); each line of the standard input is taken to be the name of an sees file to be pro­
cessed.

Delta may issue prompts on the standard output depending upon certain options specified and flags (see
admin(1» that may be present in the sees file (see -m and -y options below).

OPTIONS

116

Options apply independently to each named file.

-r SID Uniquely identifies which delta is to be made to the secs file. The use of this option is necessary
only if two or more outstanding get's for editing (get -e) on the same sees file were done by the
same person (login name). The SID value specified with the -r option can be either the SID
specified on the get command line or the SID to be made as reported by the get command (see
get(I». A diagnostic results if the specified SID is ambiguous, or, if necessary and omitted on the
command line.

-s Do not display the created delta's SID, number of lines inserted, deleted and unchanged in the
sees file.

-0 Retain the edited g-file which is normally removed at completion of delta processing.

-g list Specifies a list of deltas to be ignored when the file is accessed at the change level (SID) created
by this delta See get(l) for the definition of list.

-m [mrlist]
If the sees file has the v flag set (see admin(I», a Modification Request (MR) number must be
supplied as the reason for creating the new delta.

If -m is not used and the standard input is a terminal, the prompt MRs? is issued on the standard
output before the standard input is read; if the standard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments? prompt (see -y option).

MRs in a list are separated by blanks andlor tab characters. An unescaped new-line character ter­
minates the MR list

Note that if the v flag has a value (see admin(I», it is taken to be the name of a program (or shell
procedure) which will validate the correctness of the MR numbers. If a non-zero exit status is
returned from MR number validation program, delta terminates (it is assumed that the MR
numbers were not all valid).

-y [comment]
Arbitrary text to describe the reason for making the delta A null string is considered a valid com­
ment.

If -y is not specified and the standard input is a terminal, the prompt comments? is issued on the
standard output before the standard input is read; if the standard input is not a terminal, no prompt
is issued. An unescaped new-line character terminates the comment text

-p Display (on the standard output) the sees file differences before and after the delta is applied in a
diff(l) format

Last change: 6 March 1984 Sun Release 3.4

ERROR(1) USER COMMANDS ERROR(1)

Error messages that can be intuited are candidates for insertion into the file to which they refer.

Only true error messages are inserted into source files. Other error messages are consumed entirely by
error or are written to the standard output Error inserts the error messages into the source file on the line
preceeding the line number in the error message. Each error message is turned into a one line comment for
the language, and is internally llagged with the string '###' at the beginning of the error, and '%%%' at the
end of the error. This makes pattern searching for errors easier with an editor, and allows the messages to
be easily removed. In addition, each error message contains the source line number for the line the mes­
sage refers to. A reasonably formatted source program can be recompiled with the error messages still in
it, without having the error messages themselves cause future errors. For poorly formatted source pro­
grams in free format languages, such as C or Pascal, it is possible to insert a comment into another com­
ment, which can wreak havoc with a future compilation. To avoid this, format the source program so there
are no language statements on the same line as the end of a comment.

OPTIONS

FILES

BUGS

-0 Do not touch any files; all error messages are sent to the standard output

-q Error asks whether the file should be touched. A 'y' or 'n' to the question is necessary to continue.
Absence of the -q option implies that all referenced files (except those refering to discarded error
messages) are to be touched.

-v After all files have been touched, overlay the visual editor vi with it set up to edit all files touched,
and positioned in the first touched file at the first error. If vi can't be found, try ex or ed from stan­
dard places.

-t Take the following argument as a suffix list. Files whose suffices do not appear in the suffix list are
not touched. The suffix list is dot seperated, and '*' wildcards work Thus the suffix list:

".c.y.f* .h"
allows error to touch files ending with' .c', '.y', '.f*' and '.h'.

-s Print out statistics regarding the error categorization. Not too useful.

Error catches interrupt and terminate signals, and if in the insertion phase, will orderly terminate what it is
doing.

-I.errorrc
ldevltty

function names to ignore for lint error messages
user's teletype

Opens the teletype directly to do user querying.

Source files with links make a new copy of the file with only one link to it.

Changing a language processor's format of error messages may cause error to not understand the error
message.

Error, since it is purely mechanical, will not filter out subsequent errors caused by 'lI00dgating' initiated
by one syntactically trivial error. Humans are still much better at discarding these related errors.

Pascal error messages belong after the lines affected (error puts them before). The alignment of the 'I'
marking the point of error is also disturbed by error.

Error was designed for work on CRT's at reasonably high speed It is less pleasant on slow speed termi­
nals, and has never been used on hardcopy terminals.

Sun Release 3.4 Last change: 13 March 1984 149

EX(1) USER COMMANDS EX(1)

NAME
ex, edit, e - text editor

SYNOPSIS
ex [-] [-R] [-r] [-t tag] [+command] [-v] [-x] [-wnnn] [-I] file . ..
edit [options]

DESCRIPTION
ex, a line editor, is the root of a family of editors that includes edit, ex, and vi (the display editor). In most
cases vi is preferred for interactive use.

OPTIONS
supress all interactive feedback to the user - useful for processing ex scripts in shell files.

-R Read only. Do not overwrite the original file.

-r recover the indicatedfiles after a system crash.

-t tag edit the file containing the tag tag. A tags database must first be created using the ctags(l) com-
mand.

+ command
start the editing session by executing command.

-v start up in display editing state using vi(l). You can achieve the same effect by simply typing the
vi command itself.

-x prompt for a key to be used in encrypting the file being edited.

-wnnn set the default window (number of lines on your terminal) to nnn- this is useful if you are dial-
ling into the system over a slow 'phone line.

-I set up for editing LISP programs.

ENVIRONMENT

FILES

150

The editor recognizes the environment variable EXINIT as a command (or list of commands separated by I
characters) to run when it starts up. H this variable is undefined, the editor checks for startup commands in
the file 7.exrc file, which you must own. However, if there is a .exrc owned by you in the current direc­
tory, the editor takes its startup commands from this file-overriding both the file in your home directory
and the environment variable.

lusrllib/ex? ?strings
lusrllib/ex? ?recover
lusrllib/ex? . ?preserve
letcltermcap

error messages
recover command
preserve command
describes capabilities of terminals

Lastchange: 13 November 1986 Sun Release 3.4

FlLEMERGE (1) USER COMMANDS FILEMERGE (1)

NAME
filemerge - window-based file comparison and merging program

SYNOPSIS
filemerge [-r] [-b] [-Ilistfile] [-8 ancestor] [leftfile [rightfile [outfile]]]

DESCRIPTION
Filemerge is a window-based version of diff(l), for comparing and merging text files. It displays two files
for side-by-side comparison, each in a read-only text-subwindow. Beneath them, an editing subwindow
can be used to construct a merged version-one which contains selected lines from either or both input
files, along with any additional edits you may make.

leftfile and rightfile are the files to be compared, and outfde is name of the file containing the merged ver­
sion. If outftle is a directory, then the output is placed in the file outfilelleftfile. If outftle is omitted, the
output file is namedfilemerge.out by default. If no filename arguments are given, you can enter them from
within the tool itself.

OPTIONS

USAGE

-r Readonly mode. Don't display the editing subwindow.

-b Ignore leading blanks in comparisons.

-a ancestor

-llistftle

Compare both files with respect to ancestor. A minus-sign indicates lines that have been deleted
relative to the ancestor. A plus-sign indicates lines added relative to the ancestor.

Process a list of filename pairs. With this option, leftfile and rightfile are the names of directories,
and listfile contains a list of filenames that appear in both. filemerge compares the versions of
each file between the two directories, and allows you to create a merged version (typically in the
directory outifile). The SIDFf-Load command button, which is selected by holding the SHIFf
key while clicking on the Load button, reads in the next pair named in the list If listftle is -, then
the list of files is read from the standard input

The text in the editing subwindow (outfile) is initially the same as that in leftfile. To construct a merged
version, you can directly edit the text of outftle with textedit commands, or you can change a selected
difference to match rightfile (the one on the right) by clicking the Right button in the top panel.

Differences
At any given time, one of the displayed "differences" is current. The current difference is indicated by
emboldening the symbol adjacent to each line, and also by the notation ~'i of n" displayed in the control
panel. Once a difference is current, you can use the Left and Right buttons to apply either the left-hand or
the right-hand version of the text to outfile. The Next and Prev buttons select the next or previous differ­
ence, respectively.

Property Sheet
You can customize filemerge using the property sheet to set or alter various display and control options.
To bring up the property sheet, press the Props function key (typically L3) while the mouse is over any
part of filemerge.

Menus
There are pop-up menus associated with several of the control panel items, and a menu associated with the
editing subwindow. The former provide to select any command function obtained with a modified mouse­
button (such as SHIFf-Next); the editing subwindow's menu has items that control the filename and direc­
tory location of the merged output To bring up a menu, move the mouse-cursor to the command button, or
to the editing subwindow, and hold down the right mouse-button. Select a desired menu item by releasing
the mouse-button after moving the cursor on top of it.

Sun Release 3.4 Last change: 16 February 1987 160a

FILEMERGE (1) USER COMMANDS FllEMERGE (1)

Command Buttons
Next Make the next difference current The subwindow scrolls, if necessary, to display it

smFf -Next Make the first difference current. (Also a menu item from the Next menu.)

Prey Make the previous difference current

SmFf-Prev Make the last difference current (Also a menu item from the Prev menu.)

Right Apply right-hand version of the current difference to outfile. If autoadvance is in effect,
advance to the next difference.

SmFr-Right Apply the right-hand version and advance to the next difference, unless autoadvance is in
effect. (Also a menu item from the Right menu.)

CTRL-Right Apply the right-hand version for the current difference, and for all subsequent differences
up to the end of the file.

Left Apply the left-hand version of the current difference.

Undo Undo the last Right or Left operation. You can undo up to 100 stacked operations. You
can't undo an undo.

SmFr -Undo Undo all the operations since the last Load, or the last 1 ()() operations.

Scroll-Lock When in effect, the three text-subwindows scroll in unison. OthelWise each subwindow
scrolls independently.

i of n The number of the current difference, i, out of n detected differences. Popping up a menu
on this item allows you to jump to a selected difference.

Load Load the files whose names appear by the prompts Filel: and File2:.

SmFr-Load When the -I option is used, load the files from the directories shown in FUel and File2
corresponding to the next name in the list (taken from the listfile argument).

Done Save outfile and close the tool. The name used to save the file appears in the namestripe, in
the same fashion as textedit.

SmFf-Done Save without closing. You can also save the merged version using the Save item in the edit­
ing subwindow's menu.

Quit Exit the tool. You must explictly save your merged out/de. either with the Done button or
the Save item in the editing subwindow's menu.

Properties

FILES

160b

Hitting the L3 function key brings up a property sheet that controls several filemerge parameters. The
information in the property sheet is stored in the file 7.filemergerc. The property panel items have the fol­
lowing meanings:

Apply Any changes you have made to the property sheet will now take effect

Reset reset the property sheet to the state it had at the time of the last Apply.

Done Dose the property sheet

autoadvance Advance to the next difference after each Left or Right operation.

Toplines number of lines in the top two subwindows

Bottomlines number of lines in the bottom subwindow

Columns number of columns in the left (and also right) subwindow

-/.filemergerc file storing property sheet information

Last change: 16 February 1987 Sun Release 3.4

FlLEMERGE (1) USER COMMANDS Fll...EMERGE (1)

SEE ALSO
dif!(l), sdif!(1), textedit(l)

BUGS
Using the Find function key causes the subwindows to get out of sync for scrolling. To resync them, turn
Scroll-Lock first off, and then on.

Sun Release 3.4 Last change: 16 February 1987 l60c

GREP(1V) USER COMMANDS GREP(1V)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [-v] [-c] [-I] [-n] [-b] [-i] [-s] [-b] [-w] [-e] expression [file ...]

egrep [-v] [-c] [-I] [-n] [-b] [-i] [-s] [-b] [-e expression] [-f file]
[expression] [file ...]

fgrep [-v] [-x] [-c] [-I] [-n] [-b] [-i] [-s] [-b]
[-e string] [-f file] [string] [file ...]

SYSTEM V SYNOPSIS
grep [-v] [-c] [-I] [-n] [-b] [-i] [-s] expression [file ...]

DESCRIPTION
Commands of the grep family search the input file s (standard input default) for lines matching a pattern.
Nonnally, each line found is copied to the standard output Grep patterns are limited regular expressions in
the style of ed(1). Egrep patterns are full regular expressions including alternation. Fgrep patterns are
fixed strings - no regular expression metacharacters are supported.

In general, egrep is the fastest of these programs.

Take care when using the characters $, *, [, A, I , (,), and \ in the expression, as these characters are also
meaningful to the Shell. It is safest to enclose the entire expression argument in single quotes ' ... '.

When any of the grep utilities is applied to more than one input file, the name of the file is displayed
preceding each line which matches the pattern. The filename is not displayed when processing a single file,
so if you actually want the filename to appear, use Idev/null as a second file in the list

OPTIONS
-v Invert the search to only display lines that do not match.

-x Display only those lines which match exactly - that is, only lines which match in their entirety
(fgrep only).

-c Display a count of matching lines rather than displaying the lines which match.

-I List only the names of files with matching lines (once) separated by newlines.

-n Precede each line by its relative line number in the file.

-b Precede each line by the block number on which it was found. This is sometimes useful in locat-
ing disk block numbers by context

-i Ignore the case of letters in making comparisons - that is, upper and lower case are considered
identical.

-s Work silently, that is, display nothing except error messages. This is useful for checking the error
status.

-b Do not display filenames.

-w search for the expression as a word as if surrounded by \< and \>. grep only.

-e expression
Same as a simple expression argument, but useful when the expression begins with a-.

-f file Take the regular expression (egrep) or a list of strings separated by newlines (fgrep) from file .

SYSTEM V OPTIONS
The System V version of grep does not recognize the -b, -W, or -e options. The -s option indicates that
error messages for nonexistent or unreadable files should be suppressed, not that aU messages should be
suppressed.

Sun Release 3.4 Last change: 12 February 1987 193

GREP(IV) USER COMMANDS GREP(IV)

REGULAR EXPRESSIONS

194

The following one-character regular expressions match a single character:

c An ordinary character (not one of the special characters discussed below) is a one-character regu­
lar expression that matches that character.

\c A backslash (\) followed by any special character is a one-character regular expression that
matches the special character itself. The special characters are:

[string]

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash, respectively), which are
always special, except when they appear within square brackets ([]).

b. "(caret or circumflex), which is special at the beginning of an entire regular expression, or
when it immediately follows the left of a pair of square brackets ([D.

c. $ (currency symbol), which is special at the end of an entire regular expression.

A period (.) is a one-character regular expression that matches any character except newline.

A non-empty string of characters enclosed in square brackets is a one-character regular expression
that matches anyone character in that string. If, however, the first character of the string is a
circurnfiex C), the one-character regular expression matches any character except newline and the
remaining characters in the string. The " has this special meaning only if it occurs first in the
string. The minus (-) may be used to indicate a range of consecutive ASCII characters; for exam­
ple, [0-9] is equivalent to [0123456789]. The -loses this special meaning if it occurs first (after
an initial ", if any) or last in the string. The right square bracket (]) does not terminate such a
string when it is the first character within it (after an initial ", if any); e.g., []a-f] matches either a
right square bracket (D or one of the letters a through f inclusive. The four characters ., *, [, and \
stand for themselves within such a string of characters.

The following rules may be used to construct regular expressions:

* A one-character regular expression followed by an asterisk (*) is a regular expression that
matches zero or more occurrences of the one-character regular expression. If there is any choice,
the longest leftmost string that permits a match is chosen.

\(A regular expression enclosed between the character sequences \(and \) matches whatever the
unadorned regular expression matches. (grep only).

\n The expression \n matches the same string of characters as was matched by an expression
enclosed between \(and \) earlier in the same regular expression. Here n is a digit; the sub­
expression specified is that beginning with the n -th occurrence of \(counting from the left For
example, the expression "\(.*\)\1$ matches a line consisting of two repeated appearances of the
same string.

concatenation
The concatenation of regular expressions is a regular expression that matches the concatenation of
the strings matched by each component of the regular expression.

\< The sequence \< in a regular expression constrains the one-character regular expression immedi­
ately following it only to match something at the beginning of a "word"; that is, either at the
beginning of a line, or just before a letter, digit, or underline and after a character not one of these.

The sequence \> in a regular expression constrains the one-character regular expression immedi­
ately following it only to match something at the end of a "word"; that is, either at the end of a
line, or just before a character which is neither a letter, digit, nor underline.

A circumflex C) at the beginning of an entire regular expression constrains that regular expression
to match an initial segment of a line.

$ A currency symbol ($) at the end of an entire regular expression constrains that regular expression
to match afinal segment of a line.

Last change: 12 February 1987 Sun Release 3.4

GREP(IV) USER COMMANDS GREP(IV)

The construction "entire regular expressionS constrains the entire regular expression to match the entire
line.

egrep accepts regular expressions of the same sort grep does, except for \(, \), \n, \<, and \:>, with the addi­
tionof:

* A regular expression (not just a one-character regular expression) followed by an asterisk (*) is a
regular expression that matches zero or more occurrences of the one-character regular expression.
If there is any choice, the longest leftmost string that permits a match is chosen.

+ A regular expression followed by a plus sign (+) is a regular expression that matches one or more
occurrences of the one-character regular expression. If there is any choice, the longest leftmost
string that permits a match is chosen.

? A regular expression followed by a question mark (?) is a regular expression that matches zero or
one occurrences of the one-character regular expression. If there is any choice, the longest left­
most string that permits a match is chosen.

Alternation: two regular expressions separated by I or newline match either a match for the first or
a match for the second.

o A regular expression enclosed in parentheses matches a match for the regular expression.

The order of precedence of operators at the same parenthesis level is [] (character classes), then * + ? (clo­
sures), then concatenation, then I (alternation) and newline.

SYSTEM V REGULAR EXPRESSIONS
The System V version of grep does not accept \< or \:> in a regular expression, and accepts the following
additional item in a regular expression:

\{m\}
\{m,\}
\{m,n\} A regular expression followed by \{m\}, \{m,\}, or \{m,n\} matches a range of occurrences of the

regular expression. The values of m and n must be non-negative integers less than 256; \{m\}
matches exactly m occurrences; \{m,\} matches at least m occurrences; \{m,n\} matches any
number of occurrences between m and n inclusive. Whenever a choice exists, the regular expres­
sion matches as many occurrences as possible.

EXAMPLES
Search a file for a fixed string using/grep:

tutorial% fgrep intro lusr/manlman3/*.3*
Look for character classes using grep:

tutorial% grep '[1-8]([CJMSNX])' /usr/manfmanl/*.l
Look for alternative patterns using egrep:

tutorial% egrep '(SallyIFred) (SmithIJonesIParker)' telephone.list
To get the filename displayed when only processing a single file, use /dev/nuD as the second file in the list

tutorial% grep 'SaDy Parker' telephone.list /dev/nuD
SEE ALSO

vi(l)
ex(l)
ed(l)
sed(lV)
awk(l)
sh(l)

DIAGNOSTICS

visual display-oriented editor based on ex(1)
line-oriented text editor based on ed(1)

primitive line-oriented text editor
stream editor
pattern scanning and text processing language
Bourne Shell

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.
BUGS

For /bin/grep the order in which concatenated options appear makes a difference in the resulting output

Sun Release 3.4 Last change: 12 February 1987 195

GREP(lV) USER COMMANDS GREP(lV)

196

Lines are limited to 1024 characters by grep; longer lines are truncated.
If there is a line with embedded nulls, grep will only match up to the first null; if it matches, it will print the
entire line.
The combination of -I and -v options does not produce a list of files in which a regular expression is not
found. To get such a list, use the C-Sbell construct

foreach file (*) if ('grep "re" $file I we -1' == 0) echo $file
end

Ideally there should be only one grep.

Last change: 12 February 1987 Sun Release 3.4

ICONEDIT (1) USER COMMANDS ICONEDIT (1)

Fill (Button) Fill canvas with current rectangular fill pattern.

Invert (Button) Invert each pixel represented on the canvas.

Paintbrush
Select from among five painting modes. Instructions for each painting mode appear above the
canvas. The painting modes are:

dot Paint a single dot at a time.

line Draw a line. To draw a line on the canvas, point to the first endpoint of the line, and
press and hold the left mouse button. While holding the button down, drag the cursor to
the second endpoint of the line. Release the mouse button.

rectangle
Draw a rectangle. To draw a rectangle on the canvas, point to the first corner of the rec­
tangle and press and hold the left mouse button. While holding the button down, drag the
cursor to the diagonally opposite corner of the rectangle.· Release the mouse button.

In the control panel, the Fill field to the right of the rectangle indicates the current rectan­
gle fill pattern. Any rectangles you paint on the canvas will be filled with this pattern.

circle Draw a circle. To draw a circle on the canvas, point to the center of the circle, and press
and hold the left mouse button. While holding the button down, drag the cursor to the
desired edge of the circle. Release the mouse button.

In the control panel, the Fill field to the right of the circle indicates the current circle fill
pattern. Any circles you paint on the canvas will be filled with this pattern.

abc Insert text. To insert text, move the painting hand to "abc" and type the desired text.
Then move the cursor to the canvas and press and hold the left mouse button. A box will
appear where the text is to go. Position the box as desired and release the mouse button.

In addition, you can choose the font in which to draw the text. Point at the Fill field to
the right of the "abc" and either click the left mouse button to cycle through the avail­
able fonts or press and hold the right mouse button to bring up a menu of fonts.

Load This is the rasterop to be used when loading a file in from disk. (See the Pixrect Reference
Manual for details on rasterops).

Fill This is the rasterop to be used when filling the canvas. The source for this operation is the rectan­
gle fill pattern, and the destination is the canvas.

Proof This is the rasterop to be used when rendering the proof image. The source for this operation is
the proof image, and the destination is the proof background.

Proof background
The proof background can be changed to allow you to preview how the image will appear against
a variety of patterns. The squares just above the proof area show the patterns available for use as
the proof background pattern. To change the proof background, point at the desired pattern and
click the left mouse button.

SEE ALSO
suntools(1)

FILES
lusrlbinliconedit

Sun Release 3.4 Last change: 17 September 1985 203

ID(lV) USER COMMANDS

NAME
id - print user and group IDs and names

SYNOPSIS
lusrlSbinlid

DESCRIPTION

ID(lV)

Note: Optional Software (System V Option). Refer to Installing UNIX on the Sun Workstation for infor­
mation on how to install this command.

id writes a message on the standard output giving the user and group IDs, and the corresponding names of
the invoking process. If the effective and real IDs do not match, both are printed.

SEE ALSO
getuid(2)

204 Last change: 20 January 1987 Sun Release 3.4

INDENT (1) USER COMMANDS INDENT(1)

NAME
indent - indent and format C program source

SYNOPSIS
indent [input-file [output-file]] [-baee I-nbaee] [-bad I -nbad] [-bap I-nbap] [-bbb I -nbbb]

[-be I-nbc] [-bl] [-br] [-bs I -nbs] [-en] [-edn] [-edb I -nedb] [-ee I -nee] [-ein]
[-elin] [-dn] [-din] [-eei I -neei] [-reI I -nrel] [-in] [-ip I-nip] [-In] [-len]
[-Ip I-nip] [-pes I-npes] [-npro] [-psll-npsl] [-sc I-nse] [-sob I-nsob] [-st]
[-trotT] [-v I -nv]

DESCRIPTION
Indent is a C program formatter. It reformats the C program in the input-file according to the switches.
The switches which can be specified are described below. They may appear before or after the file names.

NOTE: If you only specify an input-file, the formatting is done 'in-place', that is, the formatted file is writ­
ten back into input-file and a backup copy of input-file is written in the current directory. If input-file is
named '{blah/blah/file', the backup file is named file.BAK.

If output-file is specified, indent checks to make sure it is different from input-file.

OPTIONS
The options listed below control the formatting style imposed by indent.

-bap,-nbap If -bap is specified, a blank line is forced after every procedure body. Default: -nbap.

-baee, -nbaee If -baee is specified, a blank line is forced around every conditional compilation block.
ie. in front of every #ifdef and after every #endif. Other blanklines surrounding these
will be swallowed. Default -nbaee.

-bad,-nbad If -bad is specified, a blank line is forced after every block of declarations. Default:
-nbad.

-bbb,-nbbb If -bbb is specified, a blank line is forCed before every block comment. Default:
-nbbb.

-be,-nbc If -bc is specified, then a newline is forced after each comma in a declaration. -nbc
turns off this option. The default is -bc ..

-br,-bl Specifying -bllines up compound statements like this:

-bs,-nbs

-en

-edn

-edb,-ncdb

Sun Release 3.4

if (...)
{

code
}

Specifying -br (the default) makes them look like this:
if (...) {

code

Enables (disables) the forcing of a blank after sizeor. Some people believe that sizeof
should appear as though it were a procedure call (-nbs, the default) and some people
believe that since sizeor is an operator, it should always be treated that way and should
always have a blank after it.

The column in which comments on code start. The default is 33.

The column in which comments on declarations start. The default is for these comments
to start in the same column as those on code.

Enables (disables) the placement of comment delimiters on blank lines. With this option
enabled, comments look like this:

Last change: 24 December 1986 205

INDENT(1)

-ee,-nce

-ein

-elin

-dn

-din

-eei,-neei

-fcl,-nfcl

-in

-ip,-nip

-In

-len

-Ip,-nlp

206

USER COMMANDS

/*
* this is a comment
*/

Rather than like this:
/* this is a comment */

INDENT(I)

This only affects block comments, not comments to the right of code. The default is
-edb.

Enables (disables) forcing 'else's to cuddle up to the immediatly preceeding '}'. The
default is -ee .

Sets the continuation indent to be n. Continuation lines will be indented that far from
the beginning of the first line of the statement Parenthesized expressions have extra
indentation added to indicate the nesting, unless -Ip is in effect -ei defaults to the same
value as -i.

Causes case labels to be indented n tab stops to the right of the containing switch state­
ment. -cliO.s causes case labels to be indented half a tab stop. The default is -eliO •

Controls the placement of comments which are not to the right of code. The default -til
means that such comments are placed one indentation level to the left of code. Specify­
ing -dO lines up these comments with the code. See the section on comment indentation
below.

Specifies the indentation, in character positions, from a declaration keyword to the fol­
lowing identifier. The default is -dil6 •

If -eei is specified, and extra expression indent is applied on continuation lines of the
expression part of if 0 and whileO. These continuation lines will be indented one extra
level - twice instead of just once. This is to avoid the confusion between the continued
expression and the statement that follows the if 0 or whileO. Default: -neei.

Enables (disables) the formatting of comments that start in column 1. Often, comments
whose leading 'I' is in column 1 have been carefully hand formatted by the programmer.
In such cases, -nfcl should be used. The default is -fel.

The number of spaces for one indentation level. The default is 4.

Enables (disables) the indentation of parameter declarations from the left margin. The
default is -ip •

Maximum length of an output line. The default is 75.

Sets the line length for block comments to n. It defaults to being the same as the usual
line length as specified with -I.

Lines up code surrounded by parenthesis in continuation lines. If a line has a left paren
which is not closed on that line, then continuation lines will be lined up to start at the
character position just after the left paren. For example, here is how a piece of contin­
ued code looks with -nip in effect:

pl = first-procedure(second-procedure(p2, p3),
third-procedure(p4, pS»;

With -Ip in effect (the default) the code looks somewhat clearer:
pl = first-procedure(second-procedure(p2, p3),

third-procedure(p4, p5»;
Inserting a couple more newlines we get:

pl = first-procedure(second-procedure(p2,
p3),

third-procedure(p4,
pS)) ;

Last change: 24 December 1986 Sun Release 3.4

INDENT(l)

-npro

-pes ,-npes

-psl,-npsl

-sc,-nsc

-sob,-nsob

-st

-Ttypename

-troff

-v,-nv

USER COMMANDS INDENT(l)

Causes the profile files, 'J.indentpro' and '-I.indent.pro', to be ignored.

H true (-pes) all procedure calls will have a space inserted between the name and the ' (' .
The default is -npes

H true (-psi) the names of procedures being defined are placed in column 1 - their types,
if any, will be left on the previous lines. The default is -psi

Enables (disables) the placement of asterisks ('*'s) at the left edge of all comments.

H -sob is specified, indent will swallow optional blank lines. You can use this to get rid
of blank lines after declarations. Default: -nsob

Causes indent to take its input from stdin, and put its output to stdout

Adds typename to the list of type keywords. Names accumulate: -T can be specified
more than once. You need to specify all the typenames that appear in your program that
are defined by typedefs - nothing will be harmed if you miss a few, but the program
won't be formatted as nicely as it should. This sounds like a painful thing to have to do,
but it's really a symptom of a problem in C: typedef causes a syntactic change in the
laguage and indent can't find all typedefs.

Causes indent to format the program for processing by troff. It will produce a fancy
listing in much the same spirit as vgrind. If the output file is not specified, the default is
standard output, rather than formatting in place.

The usual way to get a troff'd listing is with the command
indent -troff program.c I troff -mindent

-v turns on 'verbose' mode, -nv turns it off. When in verbose mode, indent reports
when it splits one line of input into two or more lines of output, and gives some size
statistics at completion. The default is -nv.

FURTHER DESCRIPTION
You may set up your own 'profile' of defaults to indent by creating a file called .indent.pro in either your
login directory or the current directory and including whatever switches you like. A' .indenLpro' in the
current directory takes precedence over the one in your login directory. If indent is run and a profile file
exists, then it is read to set up the program's defaults. Switches on the command line, though, always over­
ride profile switches. The switches should be separated by spaces, tabs or newlines.

Comments

'Box' comments. Indent assumes that any comment with a dash or star immediately after the start of com­
ment (that is, '/*-' or '1**') is a comment surrounded by a box of stars. Each line of such a comment is
left unchanged, except that its indentation may be adjusted to account for the change in indentation of the
first line of the comment.

Straight text. All other comments are treated as straight text. Indent fits as many words (separated by
blanks, tabs, or newlines) on a line as possible. Blank lines break. paragraphs.

Comment indentation

If a comment is on a line with code it is started in the 'comment column' , which is set by the -en command
line parameter. Otherwise, the comment is started at n indentation levels less than where code is currently
being placed, where n is specified by the -dn command line parameter. If the code on a line extends past
the comment column, the comment starts further to the right, and the right margin may be automatically
extended in extreme cases.

Preprocessor lines

In general, indent leaves preprocessor lines alone. The only reformmatting that it will do is to straighten up
trailing comments. It leaves imbedded comments alone. Conditional compilation (#ifdef ••• #endif) is
recognized and indent attempts to correctly compensate for the syntactic peculiarites introduced.

Sun Release 3.4 Last change: 24 December 1986 207

INDENT(l) USER COMMANDS INDENT(l)

FILES

BUGS

208

C syntax

Indent understands a substantial amount about the syntax of C, but it has a 'forgivin!' parser. It attempts to
cope with the usual sorts of incomplete and misformed syntax. In particular, the use of macros like:

4define forever for(;;)
is handled properly.

J .indent.pro profile file
-/.indentpro profile file
lusrllib/tmac/tmac.indent Troff macro package for' 'indent -trofr' output.

Indent has even more switches than Is.

A common mistake that often causes grief is typing:
indent *.c

to the shell in an attempt to indent all the C programs in a directory. This is probably a bug, not a feature.

The -bs option splits an excessivly fine hair.

Last change: 24 December 1986 Sun Release 3.4

LOGIN (1) USER COMMANDS LOGIN(l)

NAME
login - sign on

SYNOPSIS
login [username]

DESCRIPTION

FILES

login signs username on to the system initially; login may also be used at any time to change from one
userid to another.

When used with no argument, login requests a user name and password (if appropriate). Echoing is turned
off (if possible) while typing the password.

When successful, login updates accounting files, informs you of the existence of any mail, prints the mes­
sage of the day, and displays the time you last logged in (unless you have a .hushlo gin file in your home
directory - mainly used by nonhuman users, such as uucp).

login initializes the user and group IDs and the working directory, then starts a command interpreter shell
(usually either Ibinlsh or Ibinlcsh according to specifications found in the file letclpasswd. (Argument 0 of
the command interpreter is "-sh", or more generally, the name of the command interpreter with a leading
dash ("-") prepended.)

login also initializes the environment with information specifying home directory, command interpreter,
terminal-type (if available) and username.

If the file letclnologin exists, login prints its contents on the user's terminal and exits. This is used by shut­
down(8) to stop logins when the system is about to go down. If the file letclsecuretty exists, only those ter­
minals listed in that file provide login access to the super-user root. For example, if the file contained:

console

The super-user could only log in on the console.

The login command, recognized by sh and csh, is executed directly (without forking), and terminates that
shell. To resume working, you must log in again.

login times out and exits if its prompt for input is not answered within a reasonable time.

When the Bourne shell (sh) starts up, it reads a file called .profile from your home directory (that of the
usemame you use to log in). When the C-Shell (csh) starts up, it reads a file called .cshrc from your home
directory, and then reads a file called .login.

The shells read these files only if they are owned by the person logging in.

lusrladmllastlog
lusrladmlwtmp
I usrl spool/maill.
lusrlttytype
lusrlucblquota
7 .hushlo gin.
letclmotd
I etclnolo gin
letclpasswd
letclsecuretty
letclutmp

time of last login
accounting
mail
terminal types
quota check
makes login quieter
message-of-the-day
stop login, print message
password file
terminals allowing the super-user to log in
accounting

SEE ALSO
init(8), getty(8), mail(I), passwd(I), passwd(5), environ(5V), shutdown(8), utJnp(5)

DIAGNOSTICS
"Login incorrect," if the name or the password is bad (or mistyped).
"No Shell", "cannot open password file", "no directory": ask your system administrator for assistance.

Sun Release 3.4 Last change: 13 January 1987 230a

LPR(1) USER COMMANDS LPR(1)

NAME
lpr - send job to printer

SYNOPSIS
Ipr [-Pprinter] [-#num] [-Cclass] [- Jjob] [- Ttitle] [-i [num]] [-1234font]

[-wnum] [-B] [-r] [-m] [-b] [-s] [-filter-option] [filename ...]

DESCRIPTION
lpr uses a spooling daemon to print the named files when facilities become available. lpr reads the stndard
input if no files are specified.

OPTIONS
-Pprinter

Send output to the named printer. Otherwise send output to the printer named in the PRINTER
environment variable, or to the default printer, Ip. If there is no entry in letclprintcap for Ip , lpr
supplies a default set of printer capabilities.

-#num Produce multiple copies of output, using num as the number of copies for each file named. For
example,
tutorial% Ipr -#3 new.index.c print.index.c more.c

produces three copies of the file new.index.c. followed by three copies of print.index.c. etc. On the other
hand,

tutorial% cat new.index.c print.index.c more.c Ilpr-#3
generates three copies of the concatenation of the files.

-C Print class as the job classification on the burst page. For example,
tutorial% Ipr -C Operations new.index.c

replaces the system name (the name returned by hostname) with 'Operations' on the burst page,
and prints the file new.index.c .

-Jjob Print job as the job name on the burst page. Normally, lpr uses the first file's name.

- Ttitle Use title instead of the file name for the title used by pr.

-i[num] Indent output num spaces. If num is not given, eight spaces are used as default

-1 font
-2 font
-3 font
-4 font Mount the specified font on font position 1, 2, 3 or 4. The daemon will construct a .railmag file in

the spool directory that indicates the mount by referencing lusrlliblvfontlfont.

-wnum Use num as the page width for pr.

-r Remove the file upon completion of spooling. -B Omit page headers.

-m Send mail upon completion.

-b Suppress printing the burst page.

-s Create a symbolic link from the spool area to the data files rather than trying to copy them (so
large files can be printed). This means the data files should not be modified or removed until they
have been printed. In the absence of this option, files larger than 1 Megabyte in length are trun­
cated. Note that the -s option only works on the local host (files sent to remote printer hosts are
copied anyway), and only with named data files - it doesn't work if lpr is at the end of a pipeline.

filter-option

Sun Release 3.4

The following single letter options notify the line printer spooler that the files are not standard text
files. The spooling daemon will use the appropriate filters to print the data accordingly.

-p Use pr to format the files (Ipr -p is very much like pr Ilpr).
-I Print control characters and suppress page breaks.
-t The files contain troff(cat phototypesetter) binary data

Last change: 13 November 1986 237

LPR(l)

FILES

USER COMMANDS LPR(I)

-n The files contain data from ditroff(device independent troft).
-d The files contain data from tex (DVI fonnat from Stanford).
-g The files contain standard plot data as produced by the plot(3X) routines (see also

plot(IG) for the filters used by the printer spooler).
-v The files contain a raster image, see rasterfile(5).
-c This option currently is unassigned.
-f Interpret the first character of each line as a standard FORTRAN carriage control charac-

ter.

If no filter-option is given, '%!' as the first two characters indicates that the file contains
Postscript commands.

letclpasswd
letclprintcap
lusrllib/lpd*
lusrlspooll*
lusrlspooll*/cf*
lusrlspooll*/df*
lusrlspooll*/tf*

personal identification
printer capabilities data base
line printer daemons
directories used for spooling
daemon control files
data files specified in "cf' files
temporary copies of "cf' files

SEE ALSO
lpq(l), lpnn(l), pr(IV), printcap(5), Ipc(8), Ipd(8), raster:file(5), screendump(l)

DIAGNOSTICS

BUGS

238

Ipr: copy file is too large
A file is detennined to be too 'large' to print by copying into the spool area. Use the -s option as
defined above to make a sYmbolic link to the file instead of copying it. A 'large' file is approxi­
mately 1 Megabyte in this system.

Ipr: printer: unknown printer
The printer was not found in the printcap database. Usually this is a typing mistake; however, it
may indicate a missing or incorrect entry in the /etc/printcap file.

Ipr: printer: jobs queued, but cannot start daemon.
The connection to Ipd on the local machine failed. This usually means the printer server started at
boot time has died or is hung. Check the local socket ldev/printer to be sure it still exists (if it
does not exist, there is no lpd process running).

Ipr: printer: printer queue is disabled
This means the queue was turned off with
tutorial% lusr/etcllpc disable printer

to prevent lpr from putting files in the queue. This is normally done by the system manager when a printer
is going to be down for a long time. The printer can be turned back on by a super-user with lpc.

If the -f and -s flags are combined as follows:

Ipr -fs filename

copies the file to the spooling directory rather than making a symbolic link.

Placing the -s flag first, or writing each as separate arguments makes a link as expected.

Ipr -p is not equivalent to pr Ilpr. Ipr -p puts the current date at the top of each page, rather than the date
last modified, and inserts a header page between each file printed

The -p and -# options don't work well together; the second and subsequent copies do not include the file
name in each page's title.

Last change: 13 November 1986 Sun Release 3.4

LPR(1) USER COMMANDS LPR(1)

Fonts for froff and tex reside on the host with the printer. It is currently not possible to use local font
libraries.

Sun Release 3.4 Last change: 13 November 1986 238a

OD(lV) USER COMMANDS OD(lV)

SEE ALSO

BUGS

adb(l), dbxtool(l), dbx(l)

A file name argument can't start with +. A hexadecimal offset can't be a block count. Only one file name
argument can be given.

It is an historical botch to require specification of object, radix, and sign representation in a single character
argument

Sun Release 3.4 Last change: 17 July 1986

ON(IC) USER COMMANDS ON(IC)

NAME
on - execute a command remotely

SYNOPSIS
on [-i] [-n] [-d] host command [argument] ...

DESCRIPTION
The on program is used to execute commands on another system, in an environment similar to that invok­
ing the program. All environment variables are passed, and the current working directory is preserved. To
preserve the working directory, the working file system must be either already mounted on the host or be
exported to it. Relative path names will only work if they are within the current file system; absolute path
names may cause problems.

Standard input is connected to standard input of the remote command, and standard output and standard
error from the remote command are sent to the corresponding files for the on command.

OPTIONS
-i

-n

-d

Interactive mode: use remote echoing and special chat:acter processing. This option is
needed for programs that expect to be talking to a terminal. All terminal modes and win­
dow size changes are propagated.

No Input this option causes the remote program to get end-of-file when it reads from
standard input, instead of passing standard input from the standard input of the on pro­
gram. For example, -n is necessary when running commands in the background with job
control.

Debug mode: print out some messages as work is being done.

SEE ALSO
rexd(8), exports(5)

DIAGNOSTICS

BUGS

288

unknown host Host name not found
cannot connect to server Host down or not running the server
can't find. Problem finding the working directory
can't locate mount point Problem finding current file system

Other error messages may be passed back from the server.

The Sun View window system can get confused by the environment variables.

When the working directory is remote mounted over NFS, a "z hangs the window.

Last change: 13 November 1986 Sun Release 3.4

OVERVIEW (1) USER COMMANDS OVERVIEW (1)

NAME
overview - run a program from SunView that takes over the screen

SYNOPSIS
overview [-w] [generic _tool .flags] program_name [arguments] ...

DESCRIPTION
Bitmap graphics based programs that are not Sun View based can be run from Sun View using overview.
Overview shows an icon in SunView when overview is brought up iconic (-Wi flag) or when the program
being run by overview is suspended (for example using ctrl-Z). Opening the overview icon, or starting
overview non-iconic, starts the program named on the command line. Overview supresses SunView so that
Sun View window applications won't interfere with the program's display output or input devices.

Overview runs programs that fit the following profile:

own display

keyboard input from stdin

The program needs to own the bits on the screen. It doesn't use the sunwin­
dow or suntoollibraries to arbitrate the use of the display and input devices
between processes.

The program takes keyboard input from stdin directly.

mouse input from I deY/mouse The program takes locator input from the mouse directly.

OPTIONS
-w This flag is used to specify that the program being run creates its own Sun Windows window in

order to receive the serialized input stream from the keyboard and mouse that is provided by the
SunWindows kernel driver. -w tells overview to not convert SunWindows input into ASCII which
is then sent to the program being run under overview via a pty. X and NeWS are programs that fall
in this category (as of Dec 86, which is subject to change in the future).

SEE ALSO

BUGS

Windows and Window-Based Tools: Beginner's Guide

Users of overview on a Sun-3/110 frame buffer multiple frames should be aware of the existence of plane
groups forpre-3.2 applications. You can't successfully run pre-3.2 applications under overview if overview
itself is running in the color buffer. If you start overview so that it is not running in the overlay plane, then
the enable plane isn't be properly set up for viewing the application. This means that you can't run over­
view with the -WI or -Wb generic tool arguments. Also, you can't run overview on a desktop created by
suntools using the -8bit_ color_only option.

Sun Release 3.4 Last change: 13 January 1987 289

PACK(l) USER COMMANDS PACK (1)

NAME
pack, peat, unpack - compress and expand files

SYNOPSIS
paek [-] [-I] filename ...

peat filename . ..

unpaekfilename ...

DESCRIPTION

290

pack attempts to store the specified files in a packed form using Huffman (minimum redundancy) codes on
a byte-by-byte basis. Wherever possible (and useful), each input file filename is replaced by a packed file
filename.z with the same access modes, access and modified dates, and owner as those of filename. If pack
is successful, filename will be removed.

Packed files can be restored to their original fonn using unpack or peat.

The amount of compression obtained depends on the size of the input file and the frequency disttibution of
its characters.

Because a decoding tree forms the first part of each .z file, it is usually not worthwhile to pack files smaller
than three blocks unless the distribution of characters is very skewed. This may occur with printer plots or
pictures.

Typically, large text-files are reduced to 60-75% of their original size. Load modules, which use a larger
character set and have a more uniform disttibution of characters, show little compression. Their packed
versions corne in at about 90% of the original size.

No packing will occur if:
the file appears to be already packed
the file name has more than 12 characters
the file has links
the file is a directory
the file cannot be opened
no disk storage blocks will be saved by packing
a file called nal'TU!.z already exists
the .z file cannot be created
an I/O error occurred during processing

The last segment of the filename must contain no more than 12 characters to allow space for the appended
.z extension. Directories cannot be packed.

peat does for packed files what cat(1 V) does for ordinary files, except that pcat cannot be used as a filter.
The specified files are unpacked and written to the standard output To view a packed file named name.z
use:

peat filename .z

or just:

peat filename

To make an unpacked copy without destroying the packed version, use

peat filename > newname

Failure may occur if:
the filename (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Last change: 9 April 1986 Sun Release 3.4

PRT(1) USER COMMANDS PRT(I)

-b Causes the printing of the body of the sees file.

-e This keyletter implies the d, i, u, I, and t keyletters and is provided for convenience.

-y[SID] This keyletter will cause the printing of the delta table entries to stop when the delta just printed
has the specified SID. If no delta in the table has the specified SID, the entire table is printed. If no
SID is specified, the first delta in the delta table is printed This keyletter will cause the entire delta
table entry for each delta to be printed as a single line (the newlines in the normal multi-line for­
mat of the d keyletter are replaced by blanks) preceded by the name of the sees file being pro­
cessed, followed by a :, followed by a tab. This keyletter is effective only if the d keyletter is also
specified (or assumed).

-c[eutojJ]
This keyletter will cause the printing of the delta table entries to stop if the delta about to be
printed is older than the specified cutoff date-time (see get(l) for the format of date-time). If no
date-time is supplied, the epoch ()()()() GMT Jan. 1, 1970 is used. As with the y keyletter, this
key letter will cause the entire delta table entry to be printed as a single line and to be preceded by
the name of the sees file being processed, followed by a :, followed by a tab. This keyletter is
effective only if the d keyletter is also specified (or assumed).

-r[rev-eutoff]
This keyletter will cause the printing of the delta table entries to begin when the delta about to be
printed is older than or equal to the specified cutoff date-time (see get(l) for the format of date­
time). If no date-time is supplied, the epoch ()()()() GMT Jan. 1, 1970 is used (In this case, noth­
ing will be printed). As with the y keyletter, this keyletter will cause the entire delta table entry to
be printed as a single line and to be preceded by the name of the sees file being processed, fol­
lowed by a:, followed by a tab. This keyletter is effective only if the d keyletter is also specified
(or assumed).

If any keyletter but y, C, or r is supplied, the name of the file being processed (preceded by one newline and
followed by two newlines) is printed before its contents.

If none of the u, I, t, or b keyletters is supplied, the d key letter is assumed.

Note that the s and i keyletters, and the C and r keyletters are mutually exclusive; therefore, they may not
be specified together on the same prt command

The form of the delta table as produced by the y, c, and r keyletters makes it easy to sort multiple delta
tables by time order. For example, the following will print the delta tables of all sees files in directory
sees in reverse chronological order:

prt -c sees I grep • I sort '-rttah' +2 -3

When both the y and C or the y and r key letters are supplied, prt will stop printing when the first of the two
conditions is met

SEE ALSO
sccs(l), admin(I), get(I), delta(1), prs(l), what(l), help(I), sccsfile(5)

Programming Utilities/or the Sun Workstation.

DIAGNOSTICS
Use help(1) for explanations.

Sun Release 3.4 Last change: 319

PS(1) USER COMMANDS PS(1)

NAME
ps - process status

SYNOPSIS
ps [acCegklsStuvwx] [num] [kernel_ name] [c _ dwnp yle] [swap yle]

DESCRIPTION
ps displays information about processes. Normally, only those processes that are started by you and are
attached to a controlling terminal (see termio(4V» are shown. Additional categories of processes can be
added to the display using various options. In particular, the a option allows you to include processes that
are not owned by you (that do not have your user ID), and the x option allows you to include processes
without control tenninals. When you specify both a and x, you get processes owned by anyone, with or
without a control terminal. ps displays the process id, under PID; the control terminal (if any), under IT;
the cpu time used by the process so far, including both user and system time), under CPU; the state of the
process, under STAT; and finally, an indication of the COMMAND that is running.

The state is given by a sequence of four letters, for example, 'RWNA'.

First letter indicates the runnability of the process:

Second letter

Third lener

Fourth letter

R Runnable processes,
T Stopped processes,
P Processes in page wait,
D Processes in disk (or other short term) waits,
S Processes sleeping for less than about 20 seconds,
I Processes which are idle (sleeping longer than about 20 seconds).
Z A child processes that has terminated and is waiting for its parent process to do a

wait.

indicates whether a process is swapped out;
blank

(that is, a space) in this position indicates that the process is loaded (in memory).
W Process is swapped out
> Process has specified a soft limit on memory requirements and has exceeded that

limit; such a process is (necessarily) not swapped..

indicates whether a process is running with altered CPU scheduling priority (nice):
blank

(that is, a space) in this position indicates that the process is running without special
treatment

N The process priority is reduced,
< The process priority has been raised artificially.

indicates any special treatment of the process for virtual memory replacement. The
letters correspond to options to the vadvise (2) system call. Currently the possibilities
are:
blank

(that is, a space) in this position stands for VA_NORM.
A Stands for VA _ ANOM. An A typically represents a program which is doing gar­

bage collection.
S Stands for VA _ SEQL. An S is typical of large image processing programs which

are using virtual memory to sequentially address voluminous data.

Kernel_name specifies the location of the system namelist. If the k option is given, c _dump fie tells ps
where to look for core. Otherwise, the core dump is located in the file Ivmcore and this argument is
ignored. Swap ..file gives the location of a swap file other than the default, Idev/drum.

OPTIONS
a Include information about processes owned by others.

c Display the command name, as stored internally in the system for purposes of accounting, rather than

320 Last change: 13 November 1986 Sun Release 3.4

PS(l) USER COMMANDS PS(1)

the command arguments, which are kept in the process' address space. This is more reliable, if less
informative, since the process is free to destroy the latter information.

C Display raw CPU time in the %CPU field instead of the decaying average.

e Display the environment as well as the arguments to the command

g Display all processes. Without this option, ps only prints 'interesting' processes. Processes are
deemed to be uninteresting if they are process group leaders. This normally eliminates top-level
command interpreters and processes waiting for users to login on free terminals.

k Normally, kernel_name, defaults to Ivmunix, e _dump .file is ignored, and swap Jile defaults to
/dev/drum. With the k option in effect, these arguments default to /vmunix, /vmcore, and /devldrum,
respectively.

Display a long listing, with fields PPID, CP, PRI, NI, ADDR, SIZE, RSS and WCHAN as described
below.

s Adds the size SSIZ of the kernel stack of each process (for use by system maintainers) to the basic
output format.

S Display accumulated CPU time used by this process and all of its reaped children.

tx Restrict output to processes whose controlling terminal is x (which should be specified as printed by
ps, for example, t3 for tty3, teo for console, tdO for ttydO, t? for processes with no terminal, etc).
This option must be the last one given.

u Display user-oriented output This includes fields USER, %CPU, NICE, SIZE, and RSS as described
below.

v Display a version of the output containing virtual memory. This includes fields RE, SL, PAGEIN,
SIZE, RSS, LIM, TSIZ, TRS, %CPU and %MEM, described below.

w Use a wide output format (132 columns rather than 80); if repeated, that is, ww, use arbitrarily wide
output. This information is used to decide how much of long cOIlLmands to pri_nt.

x Include processes with no controlling terminal.

num A process number may be given, in which case the output is restricted to that process. This option
must also be last

DISPLAY FORMATS
Fields which are not common to all output formats:
USER name of the owner of the process
%CPU cpu utilization of the process; this is a decaying average over up to a minute of previous (real)

NICE
SIZE

RSS
LIM

TSIZ
TRS
%MEM
RE
SL
PAGEIN
UID
PPID
CP

Sun Release 3.4

time. Since the time base over which this is computed varies (since processes may be very
young) it is possible for the sum of all %CPU fields to exceed 100%.
(or NI) process scheduling increment (see setpriority(2) and niee(3C).
virtual size of the process (in kilobyte units). Witlt the u option, values shown include the size
of the text segment. With the v option, values shown do not include the text segment.
real memory (resident set) size of the process (in kilobyte units)
soft limit on memory used, specified via a call to getrlimit(2); if no limit has been specified
then shown as .u
size of text (shared program) image
size of resident (real memory) set of text
percentage of real memory used by this process.
residency time of the process (seconds in core)
sleep time of the process (seconds blocked)
number of disk i/o's resulting from references by the process to pages not loaded in core.
numerical user-id of process owner
numerical id of parent of process
short-term cpu utilization factor (used in scheduling)

Last change: 13 November 1986 321

PS(I)

FILES

USER COMMANDS

process priority (non-positive when in non-interruptible wait)
page fram number or swap area position

PS(1)

PRI
ADDR
WCHAN event on which process is waiting (an address in the system), with the initial part of the address

trimmed off, for example, 80004000 prints as 4000.

F flags associated with process as in <sys/proc.h>:
SLOAD ()()()()()()1 in core
SSYS ()()()()()()2 swapper or pager process
SLOCK 0000004 process being swapped out
SSW AP ()()()()()()8 save area flag
STRC 00000 10 process is being traced
SWTED 0000020 another tracing flag
SULOCK 0000040 user settable lock in core
SPAGE 0000080 process in page wait state
SKEEP ()()()()loo another flag to prevent swap out
SOMASK 0000200 restore old mask after taking signal
SWEXIT 0000400 working on exiting
SPHYSIO ()()()()8oo doing physical ito (hio.c)
SVFORK 0001000 process resulted from vfork()
SVFDONE 0002000 another vfork flag
SNOVM 0004000 no vrn, parent in a vfork()
SPAGI 0008000 init data space on demand, from inode
SSEQL 0010000 user warned of sequential vm behavior
SUANOM 0020000 user warned of anomalous vm behavior
STIMO °0040000 timing out during sleep
SOUSIG 0100000 using old signal mechanism
SOWEUPC 0200000 owe process an addupc() call at next ast
SSEL 0400000 selecting; wakeup/waiting danger
SLOGIN 0800000 a login process (legit child of init)
SPTECHG 1000000 pte's for process have changed

A process that has exited and has a parent, but has not yet been waited for by the parent is marked
<defunct>; a process which is blocked trying to exit is marked <exiting>; ps makes an educated guess as to
the file name and arguments given when the process was created by examining memory or the swap area.
The method is inherently somewhat unreliable and in any event a process is entitled to destroy this infor­
mation, so the names cannot be counted on too much.

/vrnunix
/devlkmem
/dev/drum
/vrncore
/dev

system namelist
kernel memory
swap device
core file
searched to find swap device and terminal names

SEE ALSO

BUGS

322

kill(l), w(l), pstat(8), termio(4V)

Things can change while ps is running; the picture it gives is only a close approximation to the current
state.

Last change: 13 November 1986 Sun Release 3.4

RANLIB(I) USER COMMANDS RANLIB(1)

NAME
ranlib - convert archives to random libraries

SYNOPSIS
ranlib [-t] archive ...

DESCRIPTION
ranlib converts each archive to a form that can be linked more rapidly. ranlib does this by adding a table
of contents called __ .SYMDEF to the beginning of the archive. ranlib uses ar(l) to reconstruct the
archive. Sufficient temporary file space must be available in the file system that contains the current direc­
tory.

OPTIONS
-t option, ranlib only "touches" the archives and does not modify them. This is useful after copying

an archive or using the -t option of make(l) in order to avoid having ld(l) complain about an
"out of date" symbol table.

SEE ALSO

BUGS

Id(I), ar(I), lorder(I), make(l)

Because generation of a library by ar and randomization of the library by ranlib are separate processes,
phase errors are possible. The linker, ld, warns when the modification date of a library is more recent than
the creation date of its dictionary; but this means that you get the warning even if you only copy the
library.

Sun Release 3.4 Last change: 8 April 1986 331

RASFll... TER8TOI (I) USER COMMANDS RASFll...TER8TOI (1)

NAME
rasfilter8to I - convert an 8-bit deep rasterfile to a I-bit deep rasterfile

SYNOPSIS
rasfilter8tol [-d] [-rgba threshold] [infile [outfile]]

DESCRIPTION
Rasfilter8tol reads the 8-bit deep rasterfile infile (standard input default) and converts it to the I-bit deep
rasterfile outfile (standard output default) by thresholding or ordered dither. The output format is Sun stan­
dard rasterfile format (see lusrlincludelrasterfile.h). This command is useful for viewing 8-bit rasterfiles
on devices that can only display monochrome images.

OPTIONS
-d Use ordered dither to convert the input file instead of thresholding.

-rgba threshold
Set the threshold for the red, green, blue, and average pixel color values. Pixels whose color
values are greater than or equal to all of the thresholds are given a value of 0 (white) in the output
rasterfile; other pixels are set to 1 (black). The average threshold defaults to 128, the individual
thresholds to zero.

EXAMPLE

FILES

The command
tutorial% screendump -f Idev/cgtwoO I rasfilter8tol Ilpr -Pversatec -v

prints a monochromatic representation of the ldevlcgtwoO frame buffer on the printer narned "versatec"
using the "V" output filter (see letc/printcap).

lusrllib/rasfiltersl* Filters for non-standard rasterfile formats

SEE ALSO
Ipr(1), rastrepl(1), screendump(1), screenload(l)

File 110 Facilities for Pixrectsin Pixrect Reference Manual

332 Last change: 16 January 1987 Sun Release 3.4

RASTREPL (1) USER COMMANDS

NAME
rastrepl - magnify a raster image by a factor of two

SYNOPSIS
rastrepl [in/de [outfile]]]]

DESCRIPTION

RASTREPL (1)

Rastrepl reads the rasterfile infile (standard input default) and converts it to the rasterfile outfile (standard
output default) which is twice as large in width and height Pixel replication is used to magnify the image.
The output file has the same type as the input file.

EXAMPLES
tutorial% screendump I rastrepl I Ipr -Pversatec -v

sends a rasterfile containing the current frame buffer contents to the Versatec plotter, doubling the size of
the image so that it fills a single page.

FILES
lusrllib/rasfiltersl*

SEE ALSO

Filters for non-standard rasterfile formats

lpr(1), screendump(1), screenload(1)

File 110 Facilities/or Pixrects in Pixrect Reference Manual

Sun Release 3.4 Last change: 16 January 1987 333

RATFOR(I)

NAME
ratfor - rational FORTRAN dialect

SYNOPSIS

USER COMMANDS

ratfor [--' c] [-c] [-b] [filename •••]

DESCRIPrION

RATFOR(1)

ratfor converts the rational FORTRAN dialect into ordinary FORTRAN 77. It provides control flow con­
structs essentially identical to those in C. See the FOKfRAN 77 Programmer's Guide for a description of the
Ratfor language.

OPTIONS
--'C Use the character c as the continuation character in column 6 when translating to RJRTRAN. The

default is to use the & character as a continuation character.

-C Pass Ratfor comments through to the translated code.

-b Translate Ratfor string constants to Hollerith constants of the form nnnbstring. Otherwise just

SEE ALSO
177(1)

pass the strings through to the translated code.

Ratfor in the FORTRAN Programmer's Guide

334 Last change: 21 December 1983 Sun Release 3.4

RCP(lC) USER COMMANDS RCP(Ie)

NAME
rep - remote file copy

SYNOPSIS
rep filename1 filename2

rep [-r] filename . .. directory

DESCRIPTION
rep copies files between machines. Eachfilename or directory argument is either a remote file name of the
form:

rhost:path

or a local file name (containing no ':' characters, or a '/' before any ':'s).

If a filename is not a full path name, it is interpreted relative to your login directory on rhost. A path on a
remote host may be quoted (using \, tt, or ') so that the metacharacters are interpreted remotely.

rep does not prompt for passwords; your current local user name must exist on rhost and allow remote
command execution by rsh(1 C).

rep handles third party copies, where neither source nor target files are on the current machine. Hostnames
may also take the form rhostJname to copy files relative to the home directory of the user named rname,
rather than the current user name on the remote host

OPTIONS
-p Preserve modification times and access times.

-r copy each subtree rooted at filename ; in this case the destination must be a directory.

SEE ALSO

BUGS

ftp(lC), rsh(lC), rlogin(lC)

rep is meant to copy between different hosts; attempting to rep a file onto itself (as with ttmyhost% rep
tmplfile myhost:ltmplfile ttl results in a severely corrupted file.

rep doesn't detect all cases where the target of a copy might be a file in cases where only a directory should
be legal.

rep can become confused by output generated by commands in a .profile, .eshre, or .login file on the
remote host.

rep doesn't copy ownership, mode, and timestamps to the new files.

rep requires that the source host have permission to execute commands on the remote host when doing
third-party copies.

If you forget to quote metacharacters intended for the remote host you get an incomprehesible error mes­
sage.

Sun Release 3.4 Last change: 13 November 1986 335

RDIST(1) USER COMMANDS RDIST(1)

NAME
rdist - remote -file distribution program

SYNOPSIS
rdist [-nqbRhivwy] [-f distfile] [-d var=value] [-m host] [name ...]

rdist [-nqbRhivwy] -c name ... [login@]host[:dest]

DESCRIPTION

336

Rdist is a program to maintain identical copies of files over multiple hosts. It preserves the owner, group,
mode, and mtime of files if possible and can update programs that are executing. Rdist reads commands
from distfile to direct the updating of files and/or directories. IT distfile is '-', the standard input is used. IT
no -f option is present, the program looks first for 'distfile', then 'Distfile' to use as the input. IT no names
are specified on the command line, rdist will update all of the files and directories listed in distfile. Other­
wise, the argument is taken to be the name of a file to be updated or the label of a command to execute. IT
label and file names conflict, it is assumed to be a label. These may be used together to update specific files
using specific commands.

The -c option forces rdist to interpret the remaining arguments as a small distfile. The equivalent distfile is
as follows.

(name ...) -> [login@]host
install [dest];

Other options:

-d Define vaT to have value. The -d option is used to define or override variable definitions in the
distfile. Value can be the empty string, one name, or a list of names surrounded by parentheses
and separated by tabs and/or spaces.

-m Limit which machines are to be updated. Multiple -m arguments can be given to limit updates to
a subset of the hosts listed in the distfile.

-0 Print the commands without executing them. This option is useful for debugging distfile.

-q Quiet mode. Files that are being modified are normally printed on standard output. The ~ option
suppresses this.

-R Remove exttaDeous files. If a directory is being updated, any files that exist on the remote host
that do not exist in the master directory are removed. This is useful for maintaining truely identi­
cal copies of directories.

-b Follow symbolic links. Copy the file that the link points to rather than the link itself.

-i Ignore unresolved links. Rdist will normally try to maintain the link structure of files being
transfered and warn the user if all the links cannot be found.

-v Verify that the files are up to date on all the hosts. Any files that are out of date will be displayed
but no files will be changed nor any mail sent.

-w Whole mode. The whole file name is appended to the destination directory name. Normally, only
the last component of a name is used when renaming files. This will preserve the directory struc­
ture of the files being copied instead of flattening the directory structure. For example, renaming a
list of files such as (dirllfl dir2lf2) to dir3 would create files dir3/dirl/fl and dir3/dir21f2 instead
of dir3/fl and dir3/f2.

-y Younger mode. Files are normally updated if their mtime and size (see stat(2» disagree. The-y
option causes rdist not to update files that are younger than the master copy. This can be used to
prevent newer copies on other hosts from being replaced. A warning message is printed for files
which are newer than the master copy.

-b Binary comparison. Perform a binary comparison and update files if they differ rather than

Lastchange: 17 July 1986 Sun Release 3.4

RDIST(1) USER COMMANDS RDIST(1)

comparing dates and sizes.

Distfile contains a sequence of entries that specify the files to be copied, the destination hosts, and what
operations to perform to do the updating. Each entry has one of the following formats.

<variable name> '=' <Dame list>
[label:] <source list> '->' <destination list> <command list>
[label:] <source list> '::' <time_stamp file> <command list>

The first format is used for defining variables. The second format is used for distributing files to other
hosts. The third format is used for making lists of files that have been changed since some given date. The
source list specifies a list of files and/or directories on the local host which are to be used as the master
copy for distribution. The destination list is the list of hosts to which these files are to be copied. Each file
in the source list is added to a list of changes if the file is out of date on the host being updated (second for­
mat) or the file is newer than the time stamp file (third format).

Labels are optional. They are used to identify a command for partial updates.

Newlines, tabs, and blanks are only used as separators and are otherwise ignored. Comments begin with
'#' and end with a newline.

Variables to be expanded begin with '$' followed by one character or a name enclosed in curly braces (see
the examples at the end).

The source and destination lists have the following format:

<Dame>
or

'(' <zero or more names separated by white-space> ')'

The shell rneta-characters '[', oJ', '{', '}', '.', and'1' are recognized and expanded (on the local host only)
in the same way as csh(l). They can be escaped with a backslash. The ,-, character is also expanded in
the same way as csh but is expanded separately on the local and destination hosts. When the -w option is
used with a file name that begins with '-', everything except the horne directory is appended to the destina­
tion name. File names which do not begin with 'I' or ,-, use the destination user's horne directory as the
root directory for the rest of the file name.

The command list consists of zero or more commands of the following format.

'install' <options> opt_dest_narne ';'
'notify' <Dame list>';'
'except' <Dame list>';'
'exceptyat' <pattern list>';'
'special' <Dame list>string ';'

The install command is used to copy out of date files and/or directories. Each source file is copied to each
host in the destination list Directories are recursively copied in the same way. Opt_dest_name is an
optional parameter to rename files. If no install command appears in the command list or the destination
name is not specified, the source file name is used. Directories in the path name will be created if they do
not exist on the remote host. To help prevent disasters, a non-empty directory on a target host will never be
replaced with a regular file or a symbolic link. However, under the '-R' option a non-empty directory will
be removed if the corresponding filename is completely absent on the master host The options are '-R',
'-h', '-i', '-v', '-w', '-y', and '-b' and have the same semantics as options on the command line except
they only apply to the files in the source list The login name used on the destination host is the same as the
local host unless the destination name is of the format' 'login@host".

Sun Release 3.4 Last change: 17 July 1986 337

RDIST(1) USER COMMANDS RDIST(1)

FILES

338

The notify command is used to mail the list of files updated (and any errors that may have occured) to the
listed names. H no '@' appears in the name, the destination host is appended to the name (e.g.,
namel@host, name2@host, ...).

The except command is used to update all of the files in the source list except for the files listed in name
list. This is usually used to copy everything in a directory except certain files.

The except yat command is like the except command except that pattern list is a list of regular expressions
(see ed(l) for details). H one of the patterns matches some string within a file name, that file will be
ignored Note that since '\' is a quote character, it must be doubled to become part of the regular expres­
sion. Variables are expanded in pattern list but not shell file pattern matching characters. To include a '$',
it must be escaped with '\'.

The special command is used to specify sh(l) commands that are to be executed on the remote host after
the file in name list is updated or installed. H the name list is omitted then the shell commands will be exe­
cuted for every file Updated or installed. The shell variable 'FIT...E' is set to the current filename before exe­
cuting the commands in string. String starts and ends with '"' and can cross multiple lines in distfile. Mul­
tiple commands to the shell should be separated by ';'. Commands are executed in the user's horne direc­
tory on the host being updated. The special command can be used to rebuild private databases, etc. after a
program has been updated.

The following is a small example.

HOSTS = (matisse root@arpa)

FaES = (Ibin /lib lusrlbin lusr/games
lusr/include! {*.h, {stand,sys, vax* ,pascal,machine }/*.h}
lusr/lib lusr/man/man? lusr/ucb lusr/locallrdist)

EXLm = (Mail.rc aliases aliases.dir aliases.pag crontab dshrc
sendrnail.cf sendrnail.fc sendmail.hf sendrnail.st uucp vfont)

${FILES} -> ${HOSTS}
install-R;
except lusrllib/${EXLffi} ;
except lusr/gamesllib ;
special/usr/lib/sendmail "/usr/lib/sendmail-bz" ;

srcs:
lusrlsrclbin -> arpa

except-pat (\\.o\$ISCCS\$) ;

IMAGEN = (ips dviimp catdvi)

imagen:
lusr/locall${IMAGEN} -> arpa

install/usrllocalllib ;
notify ralph ;

${FILES} :: stamp.cory
notify root@cory ;

distfile input command file
Itmp'rdist* temporary file for update lists

Last change: 17 July 1986 Sun Release 3.4

RDIST(l) USER COMMANDS RDIST(1)

SEE ALSO
sh(I), csh(1), stat(2)

DIAGNOSTICS

BUGS

A complaint about mismatch of rdist version numbers may really stem from some problem with starting
your shell, e.g., you are in too many groups.

Source files must reside on the local host where rdist is executed.

There is no easy way to have a special command executed after all files in a directory have been updated.

Variable expansion only works for name lists; there should be a general macro facility.

Rdist aborts on files which have a negative mtime (before Jan 1, 1970).

There should be a 'force' option to allow replacement of non-empty directories by regular files or syrn­
links. A means of updating file modes and owners of otherwise identical files is also needed.

Sun Release 3.4 Lastchange: 17 July 1986 339

REFER (1) USER COMMANDS REFER(l)

NAME
refer - find and insert literature references in documents

SYNOPSIS
refer [-ar] [-b] [-cstring] [-e] [-kx] [-Im,n] [-p file] [-0] [-skeys] file •••

DESCRIPTION
Refer is a preprocessor for nroff(l), or troff(I), that finds and formats references. The input files (standard
input by default) are copied to the standard output, except for lines between. [and .] command lines, Such
lines are assumed to contain keywords as for lookbib(I), and are replaced by information from a biblio­
graphic data base. The user can avoid the search, override fields from it, or add new fields. The reference
data, from whatever source, is assigned to a set of troff strings. Macro packages such as ms(7) print the
finished reference text from these strings. A ft.ag is placed in the text at the point of reference. By default,
the references are indicated by numbers.

When refer is used with eqn(1), neqn(I), or tbl(I), refer should be used first in the sequence, to minimize
the volume of data passed through pipes.

OPTIONS

FILES

-ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If r is omitted, all author
names are reversed

-b Bare mode - do not put any ft.ags in text (neither numbers or labels).

-cstring
Capitalize (with SMALL CAPS) the fields whose key-letters are in string.

-e Accumulate references instead of leaving the references where encountered, until a sequence of
the form:

.[
$LIST$
.]

is encountered, and then write out all references collected so far. Collapse references to the same
source.

-kx Instead of numbering references, use labels as specified in a reference data line beginning with the
characters %x; By default, x is L.

-Im,n Instead of numbering references, use labels from the senior author's last name and the year of
publication. Only the first m letters of the last name and the last n digits of the date are used. If
either of m or n is omitted, the entire name or date, respectively, is used.

-p Take the next argument as a file of references to be searched The default file is searched last

-0 Do not search the default file.

-skeys Sort references by fields whose key-letters are in the keys string, and permute reference numbers
in the text accordingly. Using this option implies the -e option. The key-letters in lceys may be
followed by a number indicating how many such fields are used, with a + sign taken as a very
large number. The default is AD, which sorts on the senior author and date. To sort on all authors
and then the date, for instance, use the options -sA+ T.

lusr/dict/papers directory of default publication lists and indexes
lusrllib/refer directory of programs

SEE ALSO
addbib(1), indxbib(I), lookbib(l), roftbib(I), sortbib(l)

340 Last change: 29 April 1983 Sun Release 3.4

SCREENBLANK(1) USER COMMANDS SCREENBLANK (1)

NAME
screenblank - turn off video when the mouse and keyboard are idle

SYNOPSIS
screenblank [-m] [-k] [--d interval] [-e interval] [-Iframe _buffer]

DESCRIPTION
screenblank turns off the display when the mouse and keyboard are idle for an extended period (the default
is 10 minutes).

OPTIONS
-m Do not check whether the mouse has been idle.

-k Do not check whether the keyboard has been idle.

--d interval
Disable after interval seconds. interval is a number of the form xxx.xu where each x is a decimal
digit The default is 600 seconds (10 minutes).

-e interval
Enable within interval seconds. interval is the time between successive polls for keyboard or
mouse activity. If a poll detects keyboard or mouse activity, the display is resumed. interval is a
number of seconds, of the form xxx.xu where each x is a decimal digit The default is 0.25
seconds.

-I frame _buffer
frame_buffer is the path name of the frame buffer on which video disabling/enabling applies. The
defaults is /dev/fb.

SEE ALSO
lockscreen(1)

BUGS
When not running suntools(I), only the RETURN key resumes video display.

Sun Release 3.4 Last change: 21 June 1986 365

SCREENDUMP (1) USER COMMANDS SCREENDUMP (1)

NAME
screendump - dump frame buffer image to file

SYNOPSIS
screendump [-ce] [-f framebuffer] [-t type] [file]

DESCRIPTION
Screendump reads the contents of a frame buffer and writes the display image to file (standard output
default) in Sun standard rasterfile format (see lusrlincludelrasterfile.h).

OPTIONS
-c Dump the frame buffer contents directly without making a temporary copy in a memory pixrect

Saves time and memory but lengthens the time the frame buffer must be inactive to guarantee a
consistent screen dump.

-f framebuffer
Dump the specified frame buffer device (default Idev/tb).

-t type Set the output rasterfile type (default 1, RT _ STANDARD). See lusrlincludelrasterfile.h.

-e Set the output rasterfile type to 2, RT_BYTE_ENCODED. For most images this saves a
significant amount of space compared to the standard format

EXAMPLES

FILES

tutorial% screendump save.this.image
writes the current contents of the console frame buffer into the file save. this. image.

tutorial% screendump -f /dev/cgtwoO save.color Jmage
writes the current contents of the color frame buffer ldevlcgtwoO into the file save.color.image.

tutorial% screendump I Ipr -Pversatec -v
sends a rasterfile containing the current frame buffer to the lineprinter, selecting the printer named "versa­
tec" and the "v" output filter (see letclprintcap).

lusrllib/rasfiltersl* Filters for non-standard rasterfile formats

SEE ALSO

BUGS

366

Ipr(I), rasfilter8tol(l), rastrepl(l), screenload(l)

File lID Facilities/or Pixrects in Pixrect Reference Manual

The output file or the screen may be corrupted if the frame buffer contents are modified while the dump is
in progress.

Last change: 16 January 1987 Sun Release 3.4

SCREENLOAD (1) USER COMMANDS SCREENLOAD (1)

NAME
screenload - load frame buffer image from file

SYNOPSIS
screenload [-dp] [-r frame buffer] [-bgw] [-b count data ...] [-i color] [file]

DESCRIPTION
Screenload reads the Sun standard rasterfilefile (see lusrlincludelrasterfile.h) and displays its contents on a
frame buffer. Screenload is able to display monochrome images on a color display, but cannot display
color images on a monochrome display. If the input file contains a color image, a frame buffer has not
been explicitly specified, and Idev/fb is a monochrome frame buffer, screenload will look for a color frame
buffer with one of the standard names.

If the image contained in the input file is larger than the actual resolution of the display, screenload clips
the right and bottom edges of the input image. If the input image is smaller than the display (for example,
loading an 1152-by-900 image on a 1600-by-1280 high resolution display), screen load centers the image
on the actual workstation screen and fills the border area with solid black (by default). Various options
may be used to change the fill pattern.

OPTIONS
-d Print a warning message if the display size does not match the rasterfile image.

-p Wait for a newline to be typed on the standard input before exiting.

-r framebuffer
Display the image on the specified frame buffer device (default Idev/tb).

-b Fill the border area with a pattern of solid ones (default). On a monochrome display this results in
a black border; on a color display the color map value selected by the -i option determines the
border color.

-g Fill the border area with a pattern of "desktop grey". On a monochrome display this results in a
border matching the default background pattern used by SunView; on a color display the color
map value selected by the -i option determines the foreground border color, though the pattern is
the same as on a monochrome display.

-w Fill the border area with a pattern of solid zeros. On a monochrome display this results in a white
border; on a color display the color map value at index 0 determines the border color.

-h count data ...
Fill the border area with the bit pattern described by the following count 16-bit hexadecimal con­
stants. Note that a "1" bit is black and a "0" bit is white on the monochrome display; on a color
diplay the color map value selected by the -i option determines the border foreground color. The
number of hex constants in the pattern is limited to 16.

-i color Fill the border area with the given color value (default 255).

EXAMPLES

FILES

tutorial% screenload saved.display.image
loads the raster image contained in the file saved.display.image on the display type indicated by the
rasterfile header in that file.

tutorial% screenload -r/dev/cgtwoO monochrome.image
reloads the raster image in the file monochrome.image on the color frame buffer device IdevlcgtwoO.

tutorial% screenload -hI mY smaU.saved.image
is equivalent to the -b option (fill border with black), while

tutorial% screenload -h4 8888 8888 2222 2222 small.saved.image
is equivalent to the -g option (fill border with desktop grey).

lusrllib/rasfiltersl * Filters for non-standard rasterfile formats

Sun Release 3.4 Last change: 16 January 1987 367

SCREENLOAD (1) USER COMMANDS SCREENLOAD (1)

SEE ALSO
rasfilter8tol(I), rastrepl(I), screendump(l), screenload(l)

File 110 Facilities for Pixrects in Pixreet Reference Manual

368 Lastchange: 16 January 1987 Sun Release 3.4

SH(1) USER COMMANDS SH(I)

NAME
sh - shell, the standard UNIX command interpreter and command-level language

SYNOPSIS
sb [-acetbiknstuvx] [arguments]

DESCRIPTION
sh, the Bourne shell, is the standard UNIX command interpreter. It executes commands read from a termi­
nal or a file.

Definitions
A blank is a TAB or a SPACE character. A name is a sequence of letters, digits, or underscores beginning
with a letter or underscore. A parameter is a name, a digit, or any of the characters *, @, #, ?, -, $, and ! .

Invocation
If the shell is invoked through exec (2) and the first character of argument zero is -, commands are initially
read from $HOMEI.profile, if such a file exists and is owned by you. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as Ibinlsh.

OPTIONS

USAGE

The flags below are interpreted by the shell on invocation only; unless the -c or -s flag is specified, the first
argument is assumed to be the name of a file containing commands, and the remaining arguments are
passed as positional parameters for use with the commands that file contains.

-c string If the -c flag is present commands are read from string.
-s If the -s flag is present or if no arguments remain commands are read from the standard input.

Any remaining arguments specify the positional parameters. Shell output (except for Special
Commands) is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal, this shell is
interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an interactive
shell) and INTERRUPT is caught and ignored (so that wait is interruptible). In all cases, QUIT
is ignored by the shell.

The remaining flags and arguments are described under the set command, under Special Commands,
below.

Refer to Doing More With UNIX Beginner's Guide for more information about using the shell as a pro­
gramming language.

Commands
A simple command is a sequence of nonblank words separated by blanks. The first word specifies the
name of the command to be executed Except as specified below, the remaining words are passed as argu­
ments to the invoked command The command name is passed as argument 0 (see exec (2». The value of
a command is its exit status if it terminates normally, or (octal) 200+status if it terminates abnormally (see
sigvec (2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I (or, for historical compatibility, by'').
The standard output of each command but the last is connected by a pipe (2) to the standard input of the
next command. Each command is run as a separate process; the shell normally waits for the last command
to terminate before prompting for or accepting the next input line. The exit status of a pipeline is the exit
status of its last command.

A list is a sequence of one or more simple commands or pipelines, separated by;, &, &&, or I I , and
optionally terminated by ; or &. Of these four symbols, ; and & have equal precedence, which is lower
than that of && and II . The symbols && and II also have equal precedence. A semicolon (;) causes
sequential execution of the preceding pipeline; an ampersand (&) causes asynchronous execution of the
preceding pipeline (the shell does not wait for that pipeline to finish). The symbols && and I I are used to
indicate condition execution of the list that follows. With && , list is executed only if the preceding pipe­
line (or co~and) returns a zero exit status. With II, list is executed only if the preceding pipeline (or

Sun Release 3.4 Last change: 7 July 1986 377

SH(l) USER COMMANDS SH(l)

378

command) returns a nonzero exit status. An arbitrary number of NEWLlNEs may appear in a list, instead of
semicolons, to delimit commands.

A command is either a simple command or one of the following constructions. Unless otherwise stated, the
value returned by a command is that of the last simple command executed in the construction.

for name [in word. ..] do list done
Each time a for command is executed, name is set to the next word taken from the in word list. If
in word. .. is omitted, then the for command executes the do list once for each positional param­
eter that is set (see Parameter Substitution below). Execution ends when there are no more words
in the list

ease word in [pattern[I pattern] ...) list ;;] ... esae
A case command executes the list associated with the first pattern that matches word. The fonn
of the patterns is the same as that used for filename generation (see Filename Generation) except
that a slash, a leading dot, or a dot immediately following a slash need not be matched explicitly.

if list then list [efif list then list] ... [else list] fi
The list following if is executed and, if it returns a zero exit status, the list following the first then
is executed. Otherwise, the list following efif is executed and, if its value is zero, the list follow­
ing the next then is executed. Failing that, the else list is executed. If no else list or then list is
executed, then the if command returns a zero exit status.

while list do list done
A while command repeatedly executes the while list and, if the exit status of the last command in
the list is zero, executes the do list; otherwise the loop tenninates. If no commands in the do list
are executed, then the while command returns a zero exit status; until may be used in place of
while to negate the loop termination test.

(list) Execute list in a subshell.
{list;} list is simply executed.
name 0 {list;}

Define a function which is referenced by name. The body of the function is the list of commands
between { and }. Execution of functions is described below (see Execution).

The following words are only recognized as the first word of a command and when not quoted:

if then else elif fi case esae for while until do done { }

Comments
A word beginning with # causes that word and all the following characters up to a NEWliNE to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave accents (",,) may be used as part or all of
a word; trailing NEWLINE s are removed.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are two types of parameters, posi­
tional and keyword. If parameter is a digit, it is a positional parameter. Positional parameters may be
assigned values by set. Keyword parameters (also known as variables) may be assigned values by writing:

name=value [name=value] ...

Pattern-matching is not perfonned on value. There cannot be a function and a variable with the same
name.

${parameter}
The value, if any, of the parameter is substituted. The braces are required only when parameter is
followed by a letter, digit, or underscore that is not to be interpreted as part of its name. If param­
eter is * or @, all the positional parameters, starting with $1, are substituted (separated by spaces).
Parameter $0 is set from argument zero when the shell is invoked.

If the colon (:) is omitted from the following expressions, the shell only checks whether parameter is set or
not
${parameter:-word}

Last change: 7 July 1986 Sun Release 3.4

SH(I) USER COMMANDS

If parameter is set and is nonnull, substitute its value; otherwise substitute word.
${parameter:=word}

SH(I)

If parameter is not set or is null set it to word; the value of the parameter is substituted. Positional
parameters may not be assigned to in this way.

${parameter:?word}
If parameter is set and is nonnull, substitute its value; otherwise, print word and exit from the
shell. If word is omitted, the message "parameter null or not set" is printed.

${parameter:+ word}
If parameter is set and is nonnull, substitute word; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the following
example, pwd is executed only if d is not set or is null:

echo ${ d:-... pwd ... }

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command
? The decimal value rerurned by the last synchronously executed command.
$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below).
CDPATH

The search path for the cd command.
MAIL If this parameter is set to the name of a mail file and the MAILPATH parameter is not set,

the shell informs the user of the arrival of mail in the specified file.
MAILCHECK

This parameter specifies how often (in seconds) the shell will check for the arrival of
mail in the files specified by the MAILP ATH or MAIL parameters. The default value is
600 seconds (10 minutes). If set to 0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of filenames. If this parameter is set, the shell informs the user
of the arrival of mail in any of the specified files. Each filename can be followed by %
and a message that will be printed when the modification time changes. The default mes­
sage is you have mail.

PSt Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default "> ".
IFS Internal field separators, normally SPACE, TAB, and NEWLINE.
SHELL When the shell is invoked, it scans the environment (see Environment below) for this

name. If it is found and there is an 'r' in the filename part of its value, the shell becomes
a restricted shell.

The shell gives default values to PATH, PSI, PS2, MAILCHECK and IFS. HOME and MAIL are set by
login(l).

Blank Interpretation
Mter parameter and command substitution, the results of substitution are scanned for internal field separa­
tor characters (those found in IFS) and split into distinct arguments where such characters are found.
Explicit null arguments (tItI or ,,) are retained. Implicit null arguments (those resulting from parameters
that have no values) are removed.

Filename Generation
Following substitution, each command word is scanned for the characters *, ?, and [. If one of these char­
acters appears the word is regarded as a pattern. The word is replaced with alphabetically sorted filenames
that match the pattern. If no filename is found that matches the pattern, the word is left unchanged. The

Sun Release 3.4 Last change: 7 July 1986 379

SH(1) USER COMMANDS SH(I)

380

character. at the start of a filename or immediately following a I, as well as the character 1 itself, must be
matched explicitly.

Quoting

* Matches any string, including the null string.
? Matches any single character.
[...] Matches anyone of the enclosed characters. A pair of characters separated by - matches

any character lexically between the pair, inclusive. If the first character following the
opening "[" is a "!" any character not enclosed is matched.

The following characters have a special meaning to the shell and cause termination of a word unless
quoted:

; & () I A < > NEWLINE SPACE TAB

A character may be quoted (Le., made to stand for itself) by preceding it with a \. The pair \NEWLINE is
ignored. All characters enclosed between a pair of single quote marks ("), except a single quote, are
quoted. Inside double quote marks (" "), parameter and command substitution occurs and \ quotes the char­
acters \, " ", and $. "$*" is equivalent to "$1 $2 ... ", whereas "$@" is equivalent to "$1" "$2"

Prompting
When used interactively, the shell prompts with the value of PSI before reading a command. If at any time
a NEWLINE is typed and further input is needed to complete a command, the secondary prompt (Le., the
value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using a special notation interpreted
by the shell. The following may appear anywhere in a simple command or may precede or follow a com­
mand and are not passed on to the invoked command; substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1). If the file does not exist it is created;

otherwise, it is truncated to zero length.
> >word Use file word as standard output. If the file exists output is appended to it (by first seek­

ing to the end-of-file); otherwise, the file is created.
< <[-] word The shell input is read up to a line that is the same as word, or to an end-of-file. The

resulting document becomes the standard input If any character of word is quoted, no
interpretation is placed upon the characters of the document; otherwise, parameter and
command substitution occurs, (unescaped) \NEWLINE is ignored, and \ must be used to
quote the characters \ $, " and the first character of word. If - is appended to < <, all
leading TABs are stripped from word. and from the document.

<&digit Use the file associated with file descriptor digit as standard input. Similarly for the stan-
dard output using >&digit.

<&- The standard input is closed. Similarly for the standard output using >&-.

If any of the above is preceded by a digit, the file descriptor which will be associated with the file is that
specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant The shell evaluates redirections left-to-right
For example:

... l>xu2>&1

first associates file descriptor 1 with file xu. It associates file descriptor 2 with the file associated with file
descriptor 1 (i.e. xu). If the order of redirections were reversed, file descriptor 2 would be associated with
the terminal (assuming file descriptor 1 had been) and file descriptor 1 would be associated with file xu.

Last change: 7 July 1986 Sun Release 3.4

SH(l) USER COMMANDS SH(I)

If a command is followed by & the default standard input for the command is the empty file Idev/null.
Otherwise, the environment for the execution of a command contains the file descriptors of the invoking
shell as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment
The environment (see environ(5V» is a list of name-value pairs that is passed to an executed program in
the same way as a normal argument list. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter for each name found, giving it the
corresponding value. If the user modifies the value of any of these parameters or creates new parameters,
none of these affects the environment unless the export command is used to bind the shell's parameter to
the environment (see also set -a). A parameter may be removed from the environment with the unset com­
mand. The environment seen by any executed command is thus composed of any unmodified name-value
pairs originally inherited by the shell, minus any pairs removed by unset, plus any modifications or addi­
tions, all of which must be noted in export commands.

The environment for any simple command may be augmented by prefixing it with one or more assignments
to parameters. Thus:

TERM=450 cmd

and

(export TERM; TERM=450; cmd)

are equivalent (as far as the execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even if they occur after the com­
mand name. The following first prints a=b c and c:

Signals

echo a=b c
set -k
echo a=b c

The INTERRUPT and QUIT signals for an invoked command are ignored if the command is followed by &;
otherwise signals have the values inherited by the shell from its parent, with the exception of signal 11 (but
see also the trap command below).

Execution
Each time a command is executed, the above substitutions are carried out. If the command name matches
one of the Special Commands listed below, it is executed in the shell process. If the command name does
not match a Special Command, but matches the name of a defined function, the function is executed in the
shell process (note how this differs from the execution of shell procedures). The positional parameters $1,
$2, are set to the arguments of the function. If the command name matches neither a Special Com­
mand nor the name of a defined function, a new process is created and an attempt is made to execute the
command via exec (2).

The shell parameter PATH defines the search path for the directory containing the command. Alternative
directory names are separated by a colon (:). The default path is :/bin:/usr/bin (specifying /bin, and
/usr/bin, in addition to the current directory). Directories are searched in order. The the current directory
is specified by a null path name, which can appear immediately after the equal sign (PATH=: ...) or
between the colon delimiters (... :: ...) anywhere else in the path list If the command name contains a/
the search path is not used; such commands will not be executed by a restricted shell. Otherwise, each
directory in the path is searched for an executable file. If the file has execute permission but is not an
binary executable (see a.out(5) for details) it is assumed to be a file containing shell commands. A sub­
shell is spawned to read it. A parenthesized command is also executed in a subshell.

Sun Release 3.4 Last change: 7 July 1986 381

SH(1) USER COMMANDS SH(1)

The location in the search path where a command was found is remembered by the shell (to help avoid
unnecessary execs later). If the command was found in a relative directory, its location must be re­
determined whenever the current directory changes. The shell forgets all remembered locations whenever
the PATH variable is changed or the hash -r command is executed (see below).

Special Commands

382

Input/output redirection is now permitted for these commands. File descriptor 1 is the default output loca­
tion.

No effect; the command does nothing. A zero exit code is returned .
• file Read and execute commands from file and return. The search path specified by PATH is used to

find the directory containing file .
break [n]

Exit from the enclosing for or while loop, if any. If n is specified break n levels.
continue [n]

Resume the next iteration of the enclosing for or while loop. If n is specified resume at the n-th
enclosing loop.

cd [arg]
Change the current directory to argo The shell parameter HOME is the default argo The shell
parameter CDPATH defines the search path for the directory containing arg. Alternative directory
names are separated by a colon (:). The default path is <nulb (specifying the current directory).
Note that the current directory is specified by a null path name, which can appear immediately
after the equal sign or between the colon delimiters anywhere else in the path list. If arg begins
with a I the search path is not used. Otherwise, each directory in the path is searched for arg.

echo [arg ...]
Echo arguments. See echo (IV) for usage and description.

eval [arg ...]
The arguments are read as input to the shell and the resulting conunand(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this shell without creating a new
process. Input/output arguments may appear and, if no other arguments are given, cause the shell
input/output to be modified

exit [n]
Causes a shell to exit with the exit status specified by n. If n is omitted the exit status is that of the
last command executed (an end-of-file will also cause the shell to exit.)

export [name . ..]
The given names are marked for automatic export to the environment of subsequently-executed
commands. If no arguments are given, a list of all names that are exported in this shell is printed
Function names may not be exported.

hash [-r] [name . ..]
For each name, the location in the search path of the command specified by name is determined
and remembered by the shell. The -r option causes the shell to forget all remembered locations.
If no arguments are given, information about remembered commands is presented. Hits is the
number of times a command has been invoked by the shell process. Cost is a measure of the work
required to locate a command in the search path. There are certain situations which require that
the stored location of a command be recalculated. Commands for which this will be done are
indicated by an asterisk (*) adjacent to the hits information. Cost will be incremented when the
recalculation is done.

login [arg . ..]
Equivalent to exec login arg See login(l) for usage and description.

pwd Print the current working directory. See pwd (1) for usage and description.
read [name . ..]

One line is read from the standard input and the first word is assigned to the first name, the second
word to the second name, etc., with leftover words assigned to the last name. The return code is 0
unless an end-of-file is encountered.

Last change: 7 July 1986 Sun Release 3.4

SH(I) USER COMMANDS SH(I)

readooly [name . ..]
The given name s are marked readonly and the values of the these name s may not be changed by
subsequent assignment. If no arguments are givent a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is omitted, the return status is
that of the last command executed.

set [-aefbkntuvx- [arg . ..]]
-a Marlc variables which are modified or created for export.
-e Exit immediately if a command exits with a nonzero exit status.
-f Disable filename generation
-h Locate and remember function commands as functions are defined (function commands

are normally located when the function is executed).
-k All keyword arguments are placed in the environment for a comman~ not just those that

precede the command name.
-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These flags can also be used upon invo­
cation of the shell. The current set of flags may be found in $-. The remaining arguments are
positional parameters and are assigne~ in ordert to $1t $2, and so on. If no arguments are givent
the values of all names are printed.

shift [n]
The positional parameters are shifted to the left, from position n+l to position It and so on. Previ­
ous values between $1 and $n are discarded. If n is not given, it is assumed to be 1.

test Evaluate conditional expressions. See test(IV) for usage and description.
times Print the accumulated user and system times for processes run from the shell.
trap [arg] [n] ...

The command arg is to be read and executed when the shell receives signal(s) n. (Note that arg is
scanned once when the trap is set and once when the trap is taken.) Trap commands are executed
in order of signal number. Any attempt to set a trap on a signal that was ignored on entry to the
current shell is ineffective. An attempt to trap on signal 11 (memory fault) produces an error. If
arg is absent all trap(s) n are reset to their original values. If arg is the null string this signal is
ignored by the shell and by the commands it invokes. If n is 0 the command arg is executed on
exit from the shell. The trap command with no arguments prints a list of commands associated
with each signal number.

type [name . ..]
For each name t indicate how it would be interpreted if used as a command name.

umask [000]

The user file-creation mode mask is set to 000. The three octal digits refer to read/write/execute
permissions for ownert groupt and otherst respectively. The value of each specified digit is sub­
tracted from the corresponding 'digit' specified by the system for the creation of a file. For exam­
plet umask 022 removes group and others write permission (files normally created with mode 777
become mode 755; files created with mode 666 become mode 644). The current value of the
mask is printed if 000 is omitted

unset [name . ..]
For each name t remove the corresponding variable or function. The variables PATHt PSlt PS2,
MAILCHECK and IFS cannot be unset.

wait [n]
Wait for the specified process and report its termination status. If n is not given all currently
active child processes are waited for and the return code is zero.

Sun Release 3.4 Last change: 7 July 1986 383

SHe 1) USER COMMANDS SH(l)

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit status. If the
shell is being used noninteractively execution of the shell file is abandoned. Otherwise, the shell returns
the exit status of the last command executed (see also the exit command above).

$HOMEI.profile
/tmplsh*
/dev/null

SEE ALSO
csh(l), cd(I), echo(lV), login(l), pwd(1), test(IV), dup(2), exec(2), fork(2), pipe(2), signal(2), urnask(2),
wait(2), a.out(5), profile(5), environ(5).

CAVEATS

384

If a command is executed, and a command with the same name is installed in a directory in the search path
before the directory where the original command was found, the shell will continue to exec the original
command. Use the hash command to correct this situation.

If you move the current directory or one above it, pwd may not give the correct response. Use the cd com­
mand with a full path name to correct this situation.

Last change: 7 July 1986 Sun Release 3.4

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

NAME
suntools, othertools, selection _svc - the Sun View window environment

SYNOPSIS
suntools [-n l-s startup-file] [-S] [-d display-device] [-m mouse-device] [-k keyboard-device]

[-p] [-b red green blue] [-f red green blue] [-i] [-B I-F I-P]
[-pattern on 1 off 1 gray I iconedit-file-name] [-background raster-file-name]

-8bit _ color _only] [-toggle_enable] [-overlay_only]

GETTING STARTED
suntools starts up the SunView environment and (unless you have specified otherwise) a default arrange­
ment of a few useful "tools," or window-based utilities.

See Start-up Processing below to learn how to specify your own initial arrangement of tools. Some of the
behavior of suntools is controlled by settings in your defaults database; see SunView Defaults below.

OPTIONS
-n Bypass startup processing by ignoring both the lusrlliblsuntools and -I.suntools files. See Startup

Processing for details.

-s startup-file
Read startup commands from startup file (instead of lusrllib/suntools or -I.suntools).

-S Set "click-to-type" mode, allowing you to select a window by clicking in it. Having done so, input
is directed to that window regardless of the position of the mouse-cursor, until you click to select
some other window.

-d display-device
Use display device as the output device on which to run, rather than the default frame buffer dev­
ice,ldevljb.

-m mouse-device
Use mouse device as the system pointing device (locator), rather than the default mouse device,
ldev/mouse. .

-k keyboard-device
Accept keyboard input from keyboard device, rather than the default keyboard device, /dev/kbd.

-p Prints to standard out the name of the window device used for the suntools Root Window.

-b red green blue
Specifies the values of the red, green and blue components of the background color. If this option
is not specified, each component of the background color is 255 (white). Prism users that use this
option should use the -Sbit_color_only option too.

-f red green blue
Specifies the values of the red, green and blue components of the foreground color. If this option
is not specified, each component of the foreground color is 0 (black). Prism users that use this
option should use the -8bit_color_only option too.

-i Invert the background and foreground colors used on the screen. On a monochrome monitor, this
option provides a video reversed image. On a color monitor, colors that are not used as the back­
ground and foreground are not affected.

-B Use the background color for the Root Window color.

-F Use the foreground color for the Root Window color.

-P Use a stipple pattern for the Root Window color. This option is assumed unless -F or -B is
specified.

-pattern [on I otT I gray 1 iconedit-file-name]

Sun Release 3.4

Use the indicated "pattern" to cover the Root Window. on means to use the default desktop gray
pattern. off means to not use the default desktop gray pattern. gray means to use a 50% gray

Last change: 27 January 1986 411

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

color on color monitors. iconedit-file-name is the name of a file produced with iconedit(l) which
contains an image that is replicated allover the Root Window.

-background raster-file-name
Use the indicated raster file as the image in your Root Window. The raster file can be created with
screendump(l). Screen dumps produced on color monitors currently do not work as input to this
option. Small images are centered on the screen.

-8bit_ color_only
For multiple plane group frame buffers, only let windows be created in the 8 bit color plane group.
This frees up the black and white overlay plane to have a separate desktop running on it. This
option is usually used with the -toggle_enable option. See the section below entitled Multiple
Desktops on the Same Screen.

-toggle_enable
For multiple plane group frame buffet'S, when sliding the cursor between different desktops run­
ning within different plane groups on the same screen, change the enable plane to allow viewing
of the destination desktop. See the section below entitled Multiple Desktops on the Same Screen.

-overlay_only
For multiple plane group frame buffers, only let windows be created in the black and white over­
lay plane group. This frees up the 8 bit color plane group to have a separate desktop running in it.
This option is usually used with the -toggle_enable option. See the section below entitled Multi­
ple Desktops on the Same Screen.

DESCRIPTION

412

Windows
The SunView environment always has one window open, called the Root Window, which covers the whole
screen. A solid color is its only content Each tool is given its own window which lies on top of some of
the Root Window (and possibly on top of other tools). A window obscures any part of another window
which lies below it

Input to Windows
Mouse input is always directed to the window the mouse cursor is in. You can have keyboard input follow
mouse input, or you can use the "Click-to-Type" approach. With Click-to-Type, keyboard input contin­
ues to be directed to a window, no matter where the mouse is pointing, until you click the left or middle
mouse button in another window. Qick-to-Type is an option in your defaults database; see SunView
Defaults below. If you are not using Click-to-Type, and your mouse cursor is in the Root Window, key­
board input is discarded.

Your input actions (mouse motions, button pushes, and keystrokes) are synchronized This means that you
can "type-ahead" and "mouse-ahead," even across windows.

The Mouse Buttons
Left button (the select button) Click once to select or choose objects.

Middle button (the adjust button) Click once to shorten or lengthen your selection.

Right button (the menu button) Depress and hold down to invoke menus.

Menus
suntools provides pop-up menus. In the current release, there are two styles of pop-up menus: the original
menu style, called stacking menus, and a new style, called walking menus (also known as "pull-right
menus"). A menu is invoked by pressing and holding the menu button. The menu remains on the screen
as long as you hold the menu button down. To select a menu item, point at it (it will be highlighted), then
release the menu button.

With stacking menus, more than one menu can appear simultaneously. The menus are shown in a stack,
with the label of each menu visible, and with the current menu on top so that its items are visible. To bring
a menu to the top (and make its items available), select its label as you would a menu item. Then push the
menu button again. The menu stack is repainted with the selected menu on top.

Last change: 27 January 1986 Sun Release 3.4

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

With walking menus, any menu item can have an arrow (=>) on the right. Pointing to this arrow invokes
a sub-menu, with additional menu items that can be selected. Selecting an item that has an arrow (a
"pull-right item") invokes the first item on the sub-menu.

Walking menus are an option in your defaults database; see SunView Defaults below.

The Root Window Menu
You can use the default Root Window Menu to start ten common tools and perform three functions. To
invoke it, hold down the menu button when the mouse cursor is anywhere in the Root Window.

The items in the default Root Window Menu are:

SheUTool Creates a new shelltool(l), running a new copy of the shell.

CommandTool Creates a new cmdtool(I), a scrollable cousin of the shelltool.

MaiiTool Creates a new mailtool(I).

TextEditor Creates a new textedit(l).

DefaultsEditor Creates a new defaultsedit(I), for browsing or changing your defaults database.

IconEditor Creates a new iconedit(I).

DbxTool Creates a new dbxtool(l), a window-based debugger.

Perf'Meter Creates a new perfmeter(l), to monitor system performance.

GraphicsTool Creates a new gfxtool(l), for running graphics programs.

Console Creates a new Console window, a cmdtool with a --C flag, which acts as the system con­
sole. In particular, most error messages will be directed to the console. You should
always have a console window on your screen.

Lock Screen Completely covers the screen with a graphics display, and "locks" the workstation until
you type your password. When you "unlock" the workstation, the screen is restored as
it was when you locked it See lockscreen (1) for details.

Redisplay All Redraws all the contents of the screen. Use this to repair damage done by processes that
wrote to the screen without consulting the Sun View system.

Exit Suntools Exits the suntools program. Closes all tool windows and kills their associated processes
(depending on the processes, this can be fairly slow). You return to the shell which
invoked sun tools .
This command requires confirmation: When it prompts you, press the left mouse button
to complete the Exit Suntools command; press the right button to cancel.

You can specify your own Root Window Menu; see SunView Defaults below.

The Frame Menu
A small set of universal functions are available through the Frame Menu. There are also accelerators for
some of these functions; see below.

You can invoke the Frame Menu when the cursor is over any part of the tool which does not provide an
application-specific menu, such as the tool namestripe (black stripe holding the tool's name), the border
stripes of the window, and the whole of the tool's icon.

The items in the Frame Menu are:

Close (Open)

Move

Sun Release 3.4

Only one of Close or Open appears in the menu, depending on the current state of the
window. Close shrinks the tool to a small image (an icon). Open reopens an icon and
places the tool in the spot it occupied when it was open. Icons are placed on the screen
according to the icon policy in your defaults database; see SunView Defaults below.
You can move a closed window just like an open window. When the window is closed,
the tool's process(es) continue to run.

Moves the tool window to another spot on the screen. When invoked, Move instructs

Last change: 27 January 1986 413

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

414

Resize

Expose

Hide

Redisplay

Quit

you with an instruction box that appears in the middle of the screen.
If you are using walking menus, Move has a sub-menu with two items: Constrained
and Unconstrained. Constrained moves are either vertical or horizontal, but not both.
Selecting Move invokes a Constrained move.

Shrinks or stretches the size of a window on the screen. Resize, like Move, instructs
you with an instruction box that appears in the middle of the screen.
If you are using walking menus, Resize has a sub-menu with four items: Constrained,
Unconstrained, Zoom (or UnZoom, depending on the current state of the window) and
FulIScreen. Constrained resizes are either vertical or horizontal, but not both. Zoom
makes a window the full height of the screen; UnZoom undoes this. FulIScreen makes
a window the full height and width of the screen; Un Zoom undoes this. Selecting
Resize invokes a Constrained resize.

Brings the window to 'the top of the pile'. The whole window becomes visible, and
occludes any window it happens to overlap on the screen.

Puts the window on the 'bottom of the pile'. The window is occluded by any window
which overlaps it

Redraws the contents of the window.

Notifies the tool to terminate gracefully. This conimand requires the same type of
confirmation as the Exit Sun tools command in the Root Window Menu.

Frame Menu Accelerators
Accelerators are provided for some of the Frame Menu functions. You can invoke these functions quickly
with a simple button push in the tool window's name stripe or outer boundary, without displaying a menu.
See Windows and Window-Based Tools: Beginner's Guide for more details.

The accelerators for the various functions are:

Open Click the select mouse button when the cursor is over the icon.

Move Depress the adjust mouse button while the cursor is in the tool's name stripe or outer
boundary. A bounding box is displayed which tracks the mouse as long as you hold
the adjust button down.
If the cursor is near a comer when you press the mouse button, the move is Uncon­
strained. If it is in the middle third of a side, the move is Constrained.

Resize While holding down the CfRL key, depress the adjust mouse button while the cursor
is in the tool's name stripe or outer boundary. A bounding box is displayed, one side
or corner of which tracks the mouse as long as you hold the adjust button down.
If the cursor is near a comer when you press the mouse button, the resize is Uncon­
strained. If it is in the middle third of a side, the resize is Constrained.

Zoom (UnZoom) While holding down the CfRL key, click the select mouse button while the cursor is
in the tool's name stripe or outer boundary.

Expose Click the select mouse button while the cursor is on the tool's name stripe or outer
boundary.

Hide While holding down the SIDFf key, click the select mouse button while the cursor is
on the tool's name stripe or outer boundary.

In addition, you can use two function keys as even faster accelerators. To expose a window that is partially
hidden, hit the Expose key (normally LS) while the cursor is anywhere in the tool window, not just on the
tool's name stripe or outer boundary. Or, if the window is completely exposed, use the Expose key to hide
it Similarly, to close an open window, hit the Open key (normally L7) while the cursor is anywhere in the
tool window, not just on the tool's name stripe or outer boundary. Or, if the window is iconic, use the
Open key to open it You can change which keys mean Expose and Open by using setkeys(1).

Last change: 27 January 1986 Sun Release 3.4

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

In many multi-subwindow tools, you can adjust the boundary between two subwindows up or down
without changing the overall size of the tool. While holding down the CfRL key, depress the adjust mouse
button over the boundary. A bounding box is displayed for the sub window selected. Adjust the size of that
subwindow, exactly as with the Resize operation.

Startup Processing: The .suntools File
Unless you override it, suntools will start up with a predefined arrangement of windows. The default
arrangement is specified by the file lusrlliblsuntools. If there is a file called .suntools in your home direc­
tory, that will be used instead The -s flag on the command line indicates that the initial window arrange­
ment should be read from a file with a different name. The -0 switch suppresses this start-up processing
altogether.

To create your own .suntools, arrange the screen the way you like, then save the arrangement by running
tool places and redirecting its standard output to .suntools. See toolplaces(l) for a description of the format
of this file, or take a look at lusr/liblsuntools.

Sun View Defaults
Sun View allows you to customize the behavior of tools and packages by setting options in a defaults data­
base (one for each user). Use defaultsedit(l) to browse and edit your defaults database. Select the "Sun­
View" category to see the following items:

Walking_menus If enabled, the Root Window Menu, the Frame Manager Menu, and many tools will use
walking menus. Tools that have not been converted will still use stacking menus. If dis­
abled, all tools will use stacking menus. Default value is "Disabled" .

Click_to _Type If enabled, keyboard input will stay in a window until you click the left or middle mouse
button in another window. If disabled, keyboard input will follow the mouse. Default
value is "Disabled".

Font You can change the Sun View default font by giving the full pathname of the font you
want to use. Some alternate fonts are in the directory lusrlliblfonts!fixedwidthfonts. The
previous (2.0 release) default font is lusrlliblfontslfixedwidthfontslscreen.r.13. Default
value is null, which gives you the same effect as if you had specified
lusrlliblfontslfixedwidthfontslscreen.r.ll.

Rootmenu filename

Icon _gravity

You can change the Root Window.Menu by giving the full pathname of a file that
specifies your own menu. See Customizing the Root Window Menu below for details.
Default value is null, which gives you the menu found in lusrlliblrootmenu.

Determines which edge of the screen ("North", "South", "East", or "West") icons
will place themselves against Default value is "North".

Icon close level Determines whether icons will close ahead of or behind other windows and icons. - -
Default value is "Ahead of all".

Jump _ cursor_ on_resize

Audible bell

Visible bell

Embolden Labels

Root Pattern

Sun Release 3.4

If enabled, during a resize the cursor will jump to the edge of the window. If disabled,
the window edge will move to the current location of the cursor. Default value is "Dis­
abled".

If enabled, the "bell" command will result in a beep. Default value is "Enabled".

If enabled, the "bell" command will cause the screen to flash. Default value is
"Enabled" .

If enabled, all tool labels are boldface. Default value is "Disabled".

Used to specify the "pattern" that covers the Root Window. "on" means to use the
default desktop gray pattern. "off' means to not use the default desktop gray pattern.
"gray" means to use a 50% gray color on color monitors. Anything else is the name of

Last change: 27 January 1986 415

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

416

a file produced with iconedit(l) which contains an image that is replicated all over the
Root Window. Default value is "on".

After you have set the options you want, click on the Save button in defaultsedit; then exit suntools and res­
tart it

Customizing the Root Window Menu
The file called lusrlliblrootmenu contains the specification of the default Root Window Menu. You can
change the Root Window Menu by creating your own file and giving its name in the Rootrnenu _filename
item in the SunView Defaults (see above).

Lines in the file have the following format: The left side is a menu item to be displayed; the right side is a
command to be executed when that menu item is invoked. You can also include comment lines (beginning
with a 'I') and blank lines.

If you are using stacking menus ("Walking_menus Disabled" in SunView defaults), the menu item must
be a string (strings with embedded blanks must be delimited by double quotes). If you are using walking
menus ("Walking_menus Enabled"), the menu item can be a string or the full pathname of an icon file,
delimited by angle brackets. With care, strings and icons can be mixed in one menu.

There are four reserved-word commands that can appear on the right side.

EXIT

REFRESH

MENU

END

Exit the suntools program, after user confirmation.

Redraw the entire screen.

If you are using stacking menus, a menu is added to the pile with the Root Window
Menu. The menu contents are taken from the filename that follows the MENU com­
mand. You must give the full pathname of the file.
If you are using walking menus, this menu item is a pull-right item with a submenu. If a
filename follows the MENU command, the submenu contents are taken from the
filename. Otherwise, all the lines between this MENU command and a matching END
command are added to the submenu.

Marks the end of a nested submenu. The left side of this line should match the left side
of a line with a MENU command. Not valid if you are using stacking menus.

If the command is not one of these four reserved-word commands, it is treated as a command line and exe­
cuted. No shell interpretation is done, although you can run a shell as a command.

Here is a menu file that demonstrates some of these features:

Quit

Clock

"Mail reader"

"More tools"

"Click to type"

"Follow mouse"

"Print selection"

EXIT

clock-r-f

mailtool

MENU lusr/foo/melmoretools.menu

swin-c

swin-m

sh --c get_selection Ilpr

Only if you are using walking menus:

"Nested menu" MENU

Cmdtool cmdtool

Shelltool shelltool

"Nested menu" END

"Icon menu" MENU

Last change: 27 January 1986 Sun Release 3.4

SUNTOOLS (1) USER COMMANDS

<lusr/includ.eJimagesltextedit.icon>

<lusr/includelimagesliconediticon>

"Icon menu" END

Multiple I Color Displays

textedit

iconedit

SUNTOOLS (1)

The suntools program runs on either a monochrome or color screen. Each screen on a machine may have
its own invocation of suntools running on it The keyboard and mouse input devices are shared among
multiple screens. The mouse cursor slides from one screen to another when you move the cursor off the
edge of a screen.

A common multiple display configuration is one monochrome and one color screen. You could set up an
instance of suntools on each screen in the following way:

1. Invoke suntools on the monochrome display by running Usuntools". This starts suntools on the
default frame buffer named ldevljb.

2. In a shelltool, run "suntools -d Idev/cgoneO -n &". This starts suntools on a color screen named
Idev/cgoneO.

3. In a shelltool on the monochrome screen, run "adjacentscreens Idev/tb -r Idev/cgoneO". This sets
up cursor tracking so that the cursor slides from the monochrome screen to the color screen when
you move the cursor off the right hand side of the monochrome screen, and back when you move
the cursor off the left hand side of the color screen.

Multiple Desktops on the Same Screen
Given appropriate hardware, the suntools program can be made to run separate desktops on the same
screen. This facility is an extension of the features described in the previous section entitled
Multiple I Color Displays. The Prism is an example of a machine with multiple plane groups that can take
advantage of this facility. Each plane group on a machine may have its own invocation of suntools running
on it Such an invocation is called a desktop. The keyboard and mouse input devices are shared among
multiple desktops. The mouse cursor slides from one desktop to another when you move the cursor off the
edge of the screen.

A common multiple desktop configuration for the Prism is one monochrome and one color desktop. You
could set up an instance of suntools on each plane group in the following way:

1. Invoke suntools in the color plane group by running "suntools -8bit_ color_only -toggle_enable".
This starts suntools on the default frame buffer named ldevlfb but limits access to the color plane
group.

2. In a shelltool, run "suntools -d Idev/bwtwoO -toggle_enable -n &". This starts suntools in the
overlay plane that is accessed by Idev/bwtwoO.

3. In a shelltool run "adjacentscreens -c ldev/tb -l/devlbwtwoO". This sets up cursor tracking so
that the cursor slides from the monochrome desktop to the color desktop when you move the cur­
sor off the right hand side of the monochrome desktop, and back when you move the cursor off
the left hand side of the color desktop.

Old pre-3.2 applications run on the Sbit _color_only desktop will not appear because they will be writing to
the overlay plane. I.e., don't run old pre-3.2 applications on an 8bit_ color_only desktop.

There is an application called the switcher that is used as an alternative to adjacentscreens for getting
between desktops on the Prism. Clicking the switcher icon gets you to another desktop using some amus­
ing video wipe type animation. The switcher can also be used to simply set the enable plane to 0 or 1 if the
enable plane get out of wack. See the man page switcherl(l) for details.

Generic Tool Arguments
Most window-based applications now take the following arguments in their command lines:

FLAG (LONG FLAG)
-Ww (-width)

Sun Release 3.4

ARGS
columns

NOTES

Last change: 27 January 1986 417

~UNTUUu) (1) USER COMMANDS SUNTOOLS (1)

-Wb (-height) lines
-Ws (-size) xy x and y are in pixels
-Wp (-position) xy x and y are in pixels
-WP (-icon ""position) xy x and y are in pixels
-WI (-label) "string"
-Wi (-iconic) makes the tool start iconic (closed)
-Wt (-font) filename
-Wn (-no_ name_stripe)
-Wf (-foreground_color) red green blue 0-255 (no color-full color)
-Wb (-background_color) red green blue 0-255 (no color-full color)
-Wg (-set_ default_color) (apply color to subwindows too)
-WI (-icon Jrnage) filename (for tools with non-default icons)
-WL (-icon }abel) "string" (for tools with non-default icons)
-WT (-icon_font) filename (for tools with non-default icons)
-WH (-help) print this table

Each flag option may be specified in either its short form or its long form; the two are completely
synonymous.

Getting Out
To exit any tool, invoke the Quit command in the Frame Menu as described above. To exit the entire win­
dow system, invoke Exit SuntooJs in the Root Window Menu as described above. Make sure that all win­
dows are in a safe condition (for example, editors have written out all changes) first.

You can exit suntools via the keyboard by typing AD followed by "Q. There is no confirmation. This facil­
ity provides an escape if you inadvertently start suntools without a mouse attached to the system.

SEE ALSO
Windows and Window-Based Tools: Beginner's Guide

Some of the applications that run in the Sun View environment

clock(I), cmdtool(I), dbxtool(I), defaultsedit(I),fontedit(I), gfxtool(I), iconedit(I), lock­
screen(1), mailtool(l), overview (I), perfmeter(I), perfmon(I), shelitool(I), tektool (I), tex­
tedit(I), traffle(l)

Some of the utility programs that run in or with the SunView environment:

adjacentscreens(1), clear Junctions(l), get_selection(I), rastps(1), setkeys(I),
stty Jrom_ defaults(I), swin(I), switcher(I), toolplaces(l)

ENVIRONMENT
DEFAULTS_FILE

FILES

418

The value of this environment variable indicates the file from which Sun View defaults
are read When it is undefined, defaults are read from the .defaults file in your home
directory.

-I.suntools
lusr/binlsuntools
lusrlbinl othertools
lusr/binl get_selection
lusr/binlselection svc
lusrllib/ suntools
lusrllib/rootmenu
lusrllib/fonts/fixedwidthfonts/*
ldev/winx
ldev/ptypx
ldev/ttypx

Last change: 27 January 1986 Sun Release 3.4

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

BUGS

/dev/tb
/devlkbd
/dev/mouse
/etclutmp

Messages from the kernel ignore window boundaries unless console messages have been redirected, thus
trashing the display. Recover from this by invoking the Redisplay All item on the Root Window Menu.
Then invoke the Console item to start a console.

To improve interactive performance, the kernel should be reconfigured in order to make more memory
available for applications. See the System Manager's Guide .

With an optical mouse, sometimes the arrow-shaped cursor will not move at start-up; moving the mouse in
large circles on its special pad for a few seconds will bring the cursor to life.

suntools needs the file /etclutmp to have read and write pennission for all users. It should have been
installed with these permissions, but if not, you need to use chmod to change the permissions.

On a color display, all of the colors may "go strange" when the cursor is in certain windows. This is
caused by SunView accommodating a particular window's request for a large number of colors.

When running multiple desktops, be careful to not have more than one shell tool or cmdtool acting as the
console at once. Kill one console before starting another.

Sun Release 3.4 Last change: 27 January 1986 419

SWIN (1) USER COMMANDS SWIN(I)

NAME
swin - set/get Sun View user input options

SYNOPSIS
swin [-c] [-g] [-b] [-m] [-r event value shift_state] [-s event value shift_state] [-t seconds]

DESCRIPTION
The swin (set window; analogous to stty(1) command lets you change some of the input behavior of your
SunViewenvironment. By default, your keyboard input follows your mouse cursor. This means that in
order to type to a window you position the mouse cursor over the window. This is called keyboard­
follows-mouse mode.

You can specify that the keyboard input continues to go to the same window, regardless of the mouse cur­
sor position, until you take some specific action, like clicking the mouse. When this is done, you can roam
around the screen with the mouse cursor and not change the window to which keyboard input is directed.
Running Sun View like this is said to be operating in click-to-type mode.

When running in click-to-type mode, one user action sets the type-in point in the window that you want to
receive keyboard input. The default user action to do this is the pressing of the left mouse button while
positioning the mouse cursor over the new type-in point This user action can be changed.

Another user action restores the previous type-in point in the window that you want to receive keyboard
input. The default user action to do this is the pressing of the middle mouse button while positioning the
mouse cursor over the window. This user action can be changed.

OPTIONS

420

-c Turn on click-to-type mode using the default user actions: the left mouse button sets the type-in
point and the middle button restores the type-in point. You can use the defaultsedit(1) program to
set click-to-type on permanently; see the Sun View/Click_to _Type option.

-m Run in keyboard-follows-mouse mode.

-s event value shift_state
Set the user action that sets the type-in point and sets the keyboard input window. The event
identifies the particular user action and is one of:

LOC _ WINENTER

the mouse cursor entering a window

the left mouse button

MS_MIDDLE

the middle mouse button

MS_RIGHT

the right mouse button

decimal nwnber
place the decimal number of a firm event here; see list of events in
lusrlincludelsundevlvuid _ event.h (avoid function keys, normally unused control-ascii
characters are OK, normally unused shift keys are OK).

value identifies the transition of the event and is one of:

ENTER the mouse cursor entering a window (use with LOC _ WINENTER)

DOWN the button associated with event went down

UP the button associated with event went up (avoid this)

The shift _state identifies the state of the shift keys at the time of the event/value pair in order for
that pair to be used to control the keyboard input window. The shift_state is one of:

SHIFf _ DONT _CARE

Last change: 24 December 1985 Sun Release 3.4

SWITCHER (1)

FILES
lusrlbinlswitcher

SEE ALSO

USER COMMANDS

suntools(l), shelltool(l), adjacentscreens(l)

Sun Release 3.4 Last change: 18 July 1986

SWITCHER (1)

423

SYMORDER (1)

NAME
symorder - rearrange name list

SYNOPSIS
symorder orderlist symbolfile

DESCRIPTION

USER COMMANDS

orderlist is a file containing symbols to be found in symbolfile, 1 symbol per line.

SYMORDER (1)

symbolfile is updated in place to put the requested symbols first in the symbol table, in the order specified.
This is done by swapping the old symbols in the required spots with the new ones. If all of the order sym­
bols are not found, an error is generated.

This program was specifically designed to cut down on the overhead of getting symbols from Ivrnunix.

SEE ALSO
nlist(3)

424 Last change: 13 November 1986 Sun Release 3.4

GRAPIDCS _DEMOS (6) GAMES AND DEMOS GRAPHICS_DEMOS (6)

NAME
graphics_demos, bouncedemo, cframedemo, framedemo, goban, jumpdemo, maze, shaded, show,
showrnap, spheresdemo, stringart, suncube - graphics demonstration programs

SYNOPSIS
bouncedemo [-d dev] [-nx] [-r] [-q]

cframedemo [-d dev] [-nx] [-r] [-q]

framedemo [-d dev] [-nx] [-r] [-q]

goban game

jumpdemo [-c] [-d dey] [-nx] [-r] [-q]

maze

shaded object [-d dey]

show rasterfile [rasterfile ...]

showmap [-d dev] [-q]

spberesdemo [-d dey] [-nx] [-r] [-q]

stringart [-d dev] [-q]

sun cube [-d dev] [-q]

DESCRIPTION
Note: Optional Software (Games and Demos Option). Refer to Installing UNIX on the Sun Workstation

for information on how to install these demos.

Bouncedemo
bouncedemo displays a bouncing square.

Cframedemo
cframedemo displays a series of color frames, each of which contains a 256 by 256 image of eight-bit-deep
pixels. cframedemo looks for the frames in the filesframe.l throughframe.n in the current working direc­
tory, and displays them in numerical order. When run in the directory lusrldemolglobeframes. cframedemo
displays a rotating view of the world.

Framedemo
framedemo displays a series of frames, each of which contains a 256 by 256 image one-bit-deep pixels
(that is, the image is a square monochrome bitmap, with 256 bits on a side). framedemo looks for the
frames in the filesframe.l throughframe.n in the current working directory, and displays them in numeri­
cal order. A set of sample frames is available in the directory lusrldemolglobeframesl*. Interactive Com­
mands

If you move the cursor onto the image surface, you can type certain commands to affect the rate at which
the frames are displayed. The initial rate is one frame per second:

r removes l/20th of a second from the interval.

F removes one second from the interval. Ff makes the interval as small as possible.

s adds 1/20th of a second.

S adds one second.

Goban
goban is Japanese for "go board". It is an automatic board, but does not play go. If you invoke it with no
game argument, goban displays an important historical game written about by the Nobel Prize winning
author, Yasunari Kawabata in The Master of Go. a book which conveys the spirit of this ancient and
facinating game.

Sun Release 3.4 Last change: 29 May 1986 529

GRAPIDCS _DEMOS (6) GAMES AND DEMOS GRAPHICS _DEMOS (6)

Stones are placed on the board by selecting a grid point with the cursor and pressing the left-button. As
stones are played, the color to play next alternates between black and white. The center-button, when
pressed in the board area, backs up a move (undoes it). The right-button moves forward through the
game's sequence of moves.

Stepping backward and forward does not alter the game until the left-button is pressed to place a stone, at
which time a new branch in the line of play is begun. You can select branches by clicking the left button
on moves with lettered labels on the board.

A text sub window displays any commentary attached to a move. You can edit these comments, which are
saved along with the game.

Jumpdemo
jumpdemo simulates the famous Star Wars jump to light-speed-sequence using vector drawing. Colored
stars are drawn on color surfaces.

Maze
maze creates a random maze-pattern and tries a depth-first solution. If used in lockscreen, remember to run
in "nice" mode since this demo consumes lots of cpu cycles.

Shaded
shaded displays shaded objects. Objects are located in usrldemolDATA and include an icosahedron, glass,
soccer ball, space shuttle, egg and pyramid. This demo can take up to 40 seconds to start up with som
objects. Mouse input is required:

Interactive Commands

Click the left- and middle-buttons on the left grid to set the x-y orientation. Oick the middle-button on the
right grid to set the z orientation. Click the left-button away from either grid to open the features menu,
from which you can make selections using the left-button.

After selecting the desired features, click the left-button away from all objects to exit the features menu.

Click the right-button to begin drawing the object When the figure is finished, click the right-button to
return to the grids and menu, or type q to exit.

Show
show displays rasterfiles in a window or on a raw screen. Sample files are contained in the directory
lusrldemoICOLORPIX. Running

show COLORPIXI*
from lusrldemo will continuously cycle through the sample images.

Spheresdemo
spheresdemo computes a random collection of shaded spheres. Colored spheres are drawn on color sur­
faces.

Showmap
showmap displays 10 map projections continuously until interrupted. Each map is displayed for about 5
seconds. The maps are in the directory lusr/demo/MAPS.

Stringart
stringart continuously displays a different "work of art" every 5 seconds. A total of 24336 different
designs are possible. On color surfaces the designs will loop through the colors: red, olive, green, tur­
quoise, blue, and violet.

Suncube
Displays a cube with the SUN logo mapped to each face. Will run continuously until interrupted. On color
surfaces the colors of logo segments change gradually. On monochrome surfaces the logo segments
remain hollow.

OPTIONS
-c Rotate the color map to produce a sparkling effect.

530 Last change: 29 May 1986 Sun Release 3.4

GRAPHICS_DEMOS (6) GAMES AND DEMOS GRAPHICS_DEMOS (6)

-dsurface
Run the demo on a surface other than the window or system console, for instance:
bouncedemo -d Idev/cgoneO

-ox Draw x items, or repeat a sequence x times.

-r Retain the window. This allows the image to reappear when uncovered instead of restarting the
demo.

-q Quick exit. Useful for running several demos from within a shell script

SEE ALSO
gp_demos(6), gfxtool(1)

Sun Release 3.4 Last change: 29 May 1986 531

LIFE(6) GAMES AND DEMOS LIFE (6)

NAME
life - John Conway's game of life

SYNOPSIS
life

DESCRIPTION

532

Life is a program that plays John Conway's game of life. It only runs under suntools(I).

When invoked, life will display a window with a small control panel at the top, and a large drawing area at
the bottom. You can create pieces in the drawing area with the left button, and erase them with the middle
button. When you select Run in the control panel, the pieces will begin to evolve, and the drawing region
will update itself at a speed controlled by the slider labeled with Fast and Slow. Life keeps track of all the
pieces even if they are not visible. The scroll bars surrounding the drawing region can be used to see
pieces that have moved out of view. There are some standard patterns that can be drawn by popping up a
menu in the drawing subwindow.

The meaning of the items in the first row of the control panel (from left to right) are as follows. If you
click on the picture which looks like a tic-tac-toe board, a grid will appear in the drawing region. If you
click on Step, the mode will change from run mode (where the pieces update continuously) to step mode
(where an update is only done when you click on Step). Following Gen is a number indicating the number
of generations that have occured. The button marked Find will scroll so that at least one piece is in view.
This is useful when all the pieces dissappear from view. The button marked Clear will clear the drawing
region, but leave the other controls unchanged. Reset will reset all the panel controls, but will not erase
any of the pieces, and Quit causes the tool to exit. The second row contains two sliders. The first controls
the update speed when in run mode, the second controls the size of the pieces.

Last change: 2 May 1986 Sun Release 3.4

INTRO(7) TABLES

NAME
miscellaneous - miscellaneous useful information pages

DESCRIPTION

INTRO(7)

This section contains miscellaneous documentation, mostly in the area of text processing macro packages
for troff(I).

ascii(7)
eqnchar(7)
hier(7)
man(7)
me(7)
ms(7)

Sun Release 3.4

map of ASCII character set
special character definitions for eqn
file system hierarchy
macros to format manual pages
macros for formatting papers
macros for formatting manuscripts

Last change: 9 February 1983 535

ASCII(7) TABLES ASCll(7)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat lusr/pub/ascii

DESCRIPTION

Ascii is a map of the ASCII character set, to be printed as needed. It contains:
Decimal- Character

o NJLI 1~ 2 S1X1 3 EIXI 4 BJr 5 HQI 6 ACKI 7 BELl
8 BS I 9Hf 10 NL I 11 vr I 12 NP 13 CR I 14 S) I 15 SI I

16 IXEI 17 OC1 18 IX2I 19 OC31 20 OC4 21 NAK 22 S)N 23 Em
24 CAN 25 1M: 26 SUB 27 ESC 28 FS 29 G5 30 RS 31 US
32 SP 33 34 " 35 # 36 $ 37 % 38 & 39

,

40 (41) 42 * 43 + 44 , 45 - 46 47 I
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 59 ; 60 < 61 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 0
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 y 90 Z 91 [92 \ 93] 94 A 95
96 ... 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 106 j 107 k 108 I 109 m 110 n 111 0
112 P 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 I 125 } 126 - 127 DELI

Octal- Character

1000 NULIOOI SOHI002 S1X1003 EIXI004 BJrl005 HQI006 ACKI007 BELl
1010 BS 1011 Hf 1012 NL 1013 vr 1014 NP 1015 CR 1016 S) 1017 SI I
1020 IXE I 021 OC11 022 IX2I 023 OC31 024 OC41 025 NAKI026 S)N1027 Em
1030 CANI031 1M: 1032 SUBI033 ESCI034 FS 1035 G5 1036 RS 1037 US
1040 SP 1041 1042 " 1043 # 1044 $ 1045 % 1046 & 1047

,

1050 (1051) 1052 * 1053 + 1054 , 1055 - 1056 . 1057 I
1060 o 1061 1 1062 2 1063 3 1064 4 1065 5 1066 6 1067 7
1070 8 1071 9 1072 1073 ; 1074 < 1075 = 1076 > 1077 ?
1100 @ 1101 A 1102 B 1103 C 1104 D 1105 E 1106 F 1107 G
1110 H 1111 I 1112 J 1113 K 1114 L 1115 M 1116 N 1117 0
1120 P 1121 Q 1122 R 1123 S 1124 T 1125 U 1126 V 1127 W
1130 X 1131 y 1132 Z 1133 [1134 \ 1135] 1136 A 1137
1140 ... 1141 a 1142 b 1143 c 1144 d 1145 e 1146 f 1147 g
1150 h 1151 1152 j 1153 k 1154 I 1155 m 1156 n 1157 0

1160 P 1161 q 1162 r 1163 s 1164 t 1165 u 1166 v 1167 w
1170 x 1171 y 1172 z 1173 { 1174 I 1175 } 1176 - 1177 DELI

536 Last change: 2 June 1986 Sun Release 3.4

ASCII (7) TABlE ASCII (7)

Hexadecimal- Character

00 NJLI 01 ~ 02 SlXl 03 EIXI 04 IDf 05 H-QI 06 ACKI 07 BELl
08 BS I 09 lIT OANL I OB vr I OCNP (J) ffi I OE &> I OF SI I
10 IIEI IIOCI 12 OC'21 13 OC31 14 OC4 15 NAK 16 SYN 17 Em
18 O\N 19 EM: IA SUB IB ESC I IC FS lDGS IE RS IF US
20 SP 21 22 " 23 # I 24 $ 25 % 26 & 27

,

28 (29) 2A * 2B + I 2C , 2D - 2E 2F I
30 0 31 I 32 2 33 3 I 34 4 35 5 36 6 37 7
38 8 39 9 3A 3B ; I 3C < 3D 3E > 3F ?
40 @ 41 A 42 B 43 CI 44 D 45 E 46 F 47 G
48 H 49 I 4A J 4B KI 4C L 4D M 4E N 4F 0
50 P 51 Q 52 R 53 S I 54 T 55 U 56 V 57 W
58 X 59 y 5A Z 5B [I 5C \ 50] 5E

A 5F
60

,
61 a 62 b 63 c I 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k I 6C I 6D m 6E n 6F 0

70 P 71 q 72 r 73 s I 74 t 75 u 76 v 77 w
78 x 79 y 7A z 7B { I 7C I 7D } 7E - 7F DELI

FILES
lusr/pub/ascii

Sun Release 3.4 Last change: 2 June 1986 536a

HIER(7)

SEE ALSO

TABLES

/usr/preserve

/usr/sccs

/usr/spool.
/usr/spool./mail.
/usr/spool./l.pd

/usr/tmp

/usr/ucb
/usr/ucb/Mail.
/usr/ucb/biff
/usr/ucb/ccat
/usr/ucb/checknr
/usr/ucb/chsh

Is(l), whatis(l), whereis(l), which(l), ncheck(8), find(l), grep(l)

BUGS
The position of files is subject to change without notice.

Sun Release 3.4 Last change: 1 February 1985

HIER(7)

preserves editor files from crashes

sccs programs

delayed execution files
system mailboxes
printer queue(s)

temporary files

programs developed at U.C. Berkeley

541

MAN(7) TABLES MAN(7)

NAME
man - macros to format Reference Manual pages

SYNOPSIS
nrotT -man filename . . .

tro" -man filename . . .

DESCRIPTION

FILES

These macros are used to layout the reference pages in this manual.

Any text argument t may be zero to six words. Quotes may be used to include blanks in a ~word'. If text is
empty, the special treatment is applied to the next input line with text to be printed. In this way.I may.be
used to italicize a whole line, or .SM followed by .B to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is reset to default
value upon reaching a non-indented paragraph. Default units for indents i are ens.

Type font and size are reset to default values before each paragraph, and after processing font and size set­
ting macros.

These strings are predefined by -man:

*R ~®', ~(Reg)' in nroff.

\ *S Change to default type size.

lusrllib/tmac/tmac.an

SEE ALSO
troff(1), nroff(l), man(1)

The -man Macro Package, in Formatting Documents on the Sun Workstation.

REQUESTS
Request

.B t

.BI t

.BRt
DT
.HPi
.It
.mt
.IPxi
.IR t
LP
.POd
.PP
.RE
.RB t
.RI t
.RS i

. SRt

.SMt

Cause If no Explanation
Break Argument
no t=n.ll.*
no t=n.ll.
no t=n.tl.
no .5i Ii...
yes i=p.i.*
no t=n.tl.
no t=n.tl.
yes x=""
no t=n.ll.
yes
no d=.4v
yes
yes
no t=n.ll.
no t=n.tl.
yes i=p.i.

yes t=n.ll.
no t=n.ll.

Text t is bold.
Join words of t alternating bold and italic.
Join words of t alternating bold and Roman.
Restore default tabs.
Set prevailing indent to i. Begin paragraph with hanging indent
Text t is italic.
Join words of t alternating italic and bold.
Same as .TP with tag x.
Join words of t alternating italic and Roman.
Same as .PP.
Interparagraph distance is d.
Begin paragraph. Set prevailing indent to .5i.
End of relative indent. Set prevailing indent to amount of starting .RS.
Join words of t alternating Roman and bold.
Join words of t alternating Roman and italic.
Start relative indent, move left margin in distance i. Set prevailing indent to .5i for
nested indents .
Subhead.
Text t is small.

.TH n s dIm yes Begin page named n of section s; d is the date of the most recent change. If present,
I is the left page footer; m is the main page (center) header. Sets prevailing indent
and tabs to .5i.

.TPi yes i=p.i. Set prevailing indent to i. Begin indented paragraph with hanging tag given by next

542 Last change: 3 February 1987 Sun Release 3.4

MAN(7) TABLES MAN(7)

text line. H tag doesn't fit, place it on separate line.

* n.ll. = next text line; p.i. = prevailing indent

CONVENTIONS
A typical manual page for a command or function is laid out as follows:

.TH TITLE [1-8]
The name of the command or function in upper-case, which serves as the title of the manual page.
This is followed by the number of the section in which it appears .

. SH NAME name (or comma-separated list of names) - one-line summary
The name, or list of names, by which the command is called, followed by a dash and then a one­
line summary of the action performed. All in roman font, this section contains no troff(l) com­
mands or escapes, and no macro requests. It is used to generate the whatis(l) database .

. SH SYNOPSIS

Commands:

The syntax of the command and its arguments as typed on the command line. When in
boldface, a word must be typed exactly as printed When in italics, a word can be
replaced with text that you supply. Syntactic symbols appear in roman face:

[] An argument, when surrounded by brackets is optional.

Functions:

Arguments separated by a vertical bar are exclusive. You can supply only item
from such a list.

Arguments followed by an elipsis can be repeated. When an elipsis follows a
bracketed set, the expression within the brackets can be repeated.

H required, the data declaration, or #include directive, is shown first, followed by the
function declaration. Otherwise, the function declaration is shown .

. SH DESCRIPTION
A narrative description of the command or function in detail, including how it interacts with files
or data, and how it handles the standard input, standard output and standard error.

Filenames, and references to commands or functions described elswhere in the manual, are itali­
cised. The names of options, variables and other literal terms are in boldface .

. SHOPTIONS
The list of options along with a description of how each affects the commands operation .

. SHFILES
A list of files associated with the command or function .

. SH "SEE ALSO"
A comma-separated list of related manual pages, followed by references to other published
materials. This section contains no troff(l) escapes or commands, and no macro requests .

. SH DIAGNOSTICS
A list of diagnostic messages and an explanation of each .

. SHBUGS
A description of limitations, known defects, and possible problems associated with the command
or function.

Sun Release 3.4 Last change: 3 February 1987 543

ME(7) TABLES ME(7)

NAME
me - macros for formatting papers

SYNOPSIS
DrotT -me [options] file .. .
trofT -me [options] file .. .

DESCRIPTION

FILES

This package of nroff and trolf macro definitions provides a canned formatting facility for technical papers
in various formats. When producing 2-column output on a terminal, filter the output through col (1).

The macro requests are defined below. Many nrolf and Irolf requests are unsafe in conjunction with this
package, however these requests may be used with impunity after the first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.Is n (line spacing) n= 1 single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the eqn, neqn, refer, and tbl (I) preprocessors for equations and tables is acceptable as input

lusrllib/tmac/tmac.e
lusrllib/me/*

SEE ALSO
eqn(l), nroff(I), troff(l), refer(I), tbl(l)

The -me Macro Package, in Formatting Documents on the Sun Workstation.

REQUESTS
In the following list, "initialization" refers to the first .pp, .lp, .ip, .np, .sh, or .uh macro. This list is incom­
plete; see The -me Reference Manual for interesting details.

Request Initial Cause Explanation
Value Break

.(c

.(d

.(f

.(1

.(q

.(xx

.(z

.)c

.)d

.)f

.)1

.)q

.)x

.)z

.++mH

. +cT

. Ic

.2c

544

I
1

yes
no
no
yes
yes
no
no
yes
yes
yes
yes
yes
yes
yes
no

yes
yes
yes

Begin centered block
Begin delayed text
Begin footnote
Begin list
Begin major quote
Begin indexed item in index x
Begin fl<:>ating keep
End centered block
End delayed text
End footnote
End list
End major quote
End index item
End floating keep
Define paper section. m defines the part of the paper, and can be C (chapter), A (appen­
dix), P (preliminary, e.g., abstract, table of contents, etc.), B (bibliography), RC (chapters
renumbered from page one each chapter), or RA (appendix renumbered from page one).
Begin chapter (or appendix, etc., as set by .++). T is the chapter title .
One column format on a new page .
Two column format.

Last change: 5 June 1986 Sun Release 3.4

DUMP(8) MAINTENANCE COMMANDS DUMP(8)

NAME
dump, rdump - incremental file system dump

SYNOPSIS
letc/dump [options [arguments]] file system

DESCRIPTION
Dump backs up all files in fiJesystem. or files changed after a certain date, to magnetic tape. Options is a
string that specifies dump options, as shown below. Any arguments supplied for specific options are given
as subsequent words on the command line, in the same order as that of the options listed.

If no options are given, the default is 9u.

OPTIONS
~9 The "dump level." All files in the filesystem that have been modified since the last dump at a

lower dump level are copied to the tape. For instance, if you did a "level 2" dump on Monday,
followed by a "level 4" dump on Tuesday, a subsequent "level 3" dump on Wednesday would
contain all files modified or added since the "level 2" (Monday) backup. A "level 0" dump copies
the entire filesystem to tape.

bfactor Blocking factor. Specifies the blocking factor for tape writes. The default is 10 blocks per write.
Note that a tape block is 1024 bytes in size, or twice the size of a disk block. The highest blocking
factor available with some 6250bpi tape drives is 126.

c Cartridge. Use a cartridge instead of the standard half-inch reel. This sets the density to 1000bpi
and the length to 1700 feet. When dumping to a high-density (9-track) cartridge, include the s
(size) option with the 3825 (feet) argument to properly fill each cartridge. (This option is incom­
patible with the d option, unless you specify a density of 1000bpi with that option).

d bpi Tape density. The density of the tape, expressed in BPI, is taken from bpi. This is used to keep a
running tab on the amount of tape used per reel. The default density is 1600. Unless a higher
density is specified explicitly, dump uses its default density--even if the tape drive is capable of
higher-density operation (for instance, 6250bpi).

f dump-file
Dump file. Use dump-file as the file to dump to, instead of I devlrmt8. If dump-file is specified as
'-', dump to the standard output. If the filename argument is of the form machine:device, dump
to a remote machine. Since dump is normally run by root. the name of the remote machine must
appear in the .rhosts file of the local machine. If dump is called as rdump. the tape defaults to
dumphost:/dev/rmt8. To direct the output to a desired remote machine, set up an alias for dum­
phost in the file letc/hosts.

n Notify. When this option is specified, if dump requires attention, it sends a terminal message
(similar to wall(1» to all operators in the "operator" group.

s size Specify the size of the tape or cartridge in feet. When the specified size is reached, dump waits for
you to change the reel or cartridge. The default size is 2300 feet, except when c (cartridge) is
specified, in which case the default is 1700. To estimate the size for a tape or cartridge of a non­
standard length, use the formula:

(length * tracks) * .9

u Update the dump record. Add an entry to the file letC/dumpdates. for each filesystem successfully
dumped that includes the filesystem name, date, and dump level. This file can be edited by the
super-user.

w List the filesystems that need backing up. This information is gleaned from the files
letcldumpdates and letclJstab. When the w option is used, all other options are ignored. Mter
reporting, dump exits immediately.

W Like w, but includes all filesystems that appear in letcldumpdates. along with information about
their most recent dump dates and levels. Filesystems that need backing up are highlighted.

Sun Release 3.4 Last change: 22 July 1986 583

DUMP(8) MAINTENANCE COMMANDS DUMP(8)

Operator Intervention
dump requires operator intervention on these conditions: end of tape, end of dump, tape write error, tape
open error or disk read error (if there are more than a threshold of 32). In addition to alerting all operators
implied by the n option, dump interacts with the operator on dump's control terminal at times when dump
can no longer proceed, or if something is grossly wrong. All questions dump poses must be answered by
typing "yes" or "no", as appropriate.

Since backing up a disk can involve a lot of time and effort, dump checkpoints at the start of each tape
volume. If writing that volume fails for some reason, dump will, with operator permission, restart itself
from the checkpoint after a defective tape has been rewound and replaced.

dump reports periodically, and in verbose fashion. Each report includes estimates of the percentage of the
dump completed and how long it will take to complete the dump.

Suggested Dump Schedule
It is vital to perform full, "level 0", dumps at regular intervals. When performing a full dump, bring the
machine down to single-user mode using shutdown(8). While preparing for a full dump, it is a good idea
to clean the drive and heads.

Incremental dumps allow for convenient backup and recovery on a more frequent basis of active files, with
a minimum of tape and time. However there are some tradeoffs. First, the interval between backups should
be kept to a minimum (once a day at least). To guard against data loss as a result of a media failure (a rare,
but possible occurrence), it is a good idea to capture active files on (at least) two dump tapes. Another con­
sideration is the desire to keep unnecessary duplication of files to a minimum to save both operator time
and tape storage. A third consideration is the ease with which a particular backed-up version of a file can
be located and restored. The following four-week schedule offers a reasonable tradeoff between these
goals.

Sun Mon Tue Wed Thu Fri
Week 1: Fun 5 5 5 5 3
Week 2: 5 5 5 5 3
Week 3: 5 5 5 5 3
Week 4: 5 5 5 5 3

Although the Tuesday-Friday incrementals contain "extra copies" of files from Monday, this scheme
assures that any file modified during the week can be recovered from the previous day's incremental dump.

FILES
Idevlrmt8
letC/dumpdates
letclfstab
letc/group

default tape unit to dump to
new format dump date record
dump table: file systems and frequency
to find group operator

SEE ALSO
restore(8), dump(5), fstab(5)

DIAGNOSTICS
While running, dump emits many verbose messages.

Exit Codes

BUGS

o
1
2
3

normal exit when w or W options are used.
normal exit
error - restart writing from last checkpoint
abort - no checkpoint attempted.

Sizes are based on 1600 BPI blocked tape; the raw tape device has to be used to approach these densities.

Fewer than 32 read errors on the filesystem are ignored.

584 Last change: 22 July 1986 Sun Release 3.4

DUMP(8) MAINTENANCE COMMANDS DUMP(8)

Each reel requires a new process, so parent processes for reels already written just hang around until the
entire tape is written.

Sun Release 3.4 Last change: 22 July 1986 S84a

DUMPFS(8) MAINTENANCE COMMANDS

NAME
dumpfs - dump file system information

SYNOPSIS
/usr/etcldumpfs device

DESCRIPTION

DUMPFS(8)

Dumpfs prints out the super block and cylinder group information for the file system or special device
specified. The listing is very long and detailed. This command is useful mostly for finding out certain file
system information such as the file system block size and minimum free space percentage.

SEE ALSO
fs(5), tunefs(8), newfs(8), fsck(8)

Sun Release 3.4 Last change: 4 March 1983 585

EDQUOTA(8) MAINTENANCE COMMANDS EDQUOTA(8)

NAME
edquota - edit user quotas

SYNOPSIS
lusr/etcledquota [-p proto-user] users . ..
lusr/etcledquota -t

DESCRIPTION
Edquota is a quota editor. One or more users may be specified on the command line. For each user a tem­
porary file is created with an ASCII representation of the current disk quotas for that user and an editor is
then invoked on the file. The quotas may then be modified, new quotas added, etc. Upon leaving the edi­
tor, edquota reads the temporary file and modifies the binary quota files to reflect the changes made.

The editor invoked is vi (1) unless the EDITOR environment variable specifies otherwise.

Only the super-user may edit quotas. (In order for quotas to be estabished on a file system, the root direc­
tory of the file system must contain a file, owned by root, called quotas. See quotaon (1) for details.)

OPTIONS

FILES

-p

-t

duplicate the quotas of the prototypical user specified for each user specified. This is the normal
mechanism used to initialize quotas for groups of users.

edit the soft time limits for each file system. If the time limits are zero, the default time limits in
<ufslquota.h> are used. Time units of sec(onds), min(utes), hour(s), day(s), weekes), and
month(s) are understood Time limits are printed in the greatest possible time unit such that the
value is greater than or equal to one.

quotas
letclmtab

quota file at the file system root
mounted file systems

SEE ALSO
quota(l), quotact1(2), quotacheck(8), quotaon(8), repquota(8)

BUGS
The format of the temporary file is inscrutible.

586 Last change: 5 February 1981 Sun Release 3.4

FASTBOOT (8) MAINTENANCE COMMANDS

NAME
fastboot, fastbalt - reboot/halt the system without checking the disks

SYNOPSIS
letdrastboot [boot-options]
letdrasthalt [halt-options]

DESCRIPTION

FASTBOOT (8)

lastboot and fasthalt are shell scripts that reboot and halt the system without checking the file systems.
This is done by creating a file Ifastboot, then invoking the reboot program. The system startup script,
letclre, looks for this file and, if present, skips the normal invocation of fsck(8).

SEE ALSO
halt(8), init(8), rc(8), reboot(8)

Sun Release 3.4 Last change: 30 June 1986 591

FINGERD (8C) MAINTENANCE COMMANDS FINGERD (8e)

NAME
fingerd - remote user information server

SYNOPSIS
/usr/etC/in.fingerd

DESCRIPTION
fingerd is a simple protocol based on RFC742 that provides an interface to the Name and Finger programs
at several network sites. The program is supposed to return a friendly, human-oriented status repOrt on
either the system at the moment or a particular person in depth. There is no required format and the proto­
col consists mostly of specifying a single' 'command line" .

fingerd listens for TCP requests at port 79. Once connected it reads a single command line terminated by a
<CRLF> which is passed tofinger(l). fingerd closes its connections as soon as the output is finished.

If the line is null (i.e. just a <CRLF> is sent) then finger returns a udefault" report that lists all people
logged into the system at that moment.

If a user name is specified (e.g. eric<CRLF» then the response lists more extended information for only
that particular user, whether logged in or not. Allowable "names" in the command line include both
"login names" and u user names". If a name is ambiguous, all possible derivations are returned.

SEE ALSO
finger(l)

BUGS
Connecting directly to the server from a TIP or an equally narrow-minded TELNET -protocol user program
can result in meaningless attempts at option negotiation being sent to the server, which will foul up the
command line interpretation. fingerd should be taught to filter out lAC's and perhaps even respond nega­
tively (lAC WON'T) to all option commands received

Sun Release 3.4 Last change: 12 February 1987 591a

FPAREL(8) MAINTENANCE COMMANDS FPAREL(8)

NAME
fparel - Sun FP A online reliability tests

SYNOPSIS
rparel [-pn] [-v]

DESCRIPTION
fpaTel is a command to execute the Sun FP A online confidence and reliability test program. fparel tests
about 90% of the functions of the FP A board, and tests all FP A contexts not in use by other processes.
fpaTel runs under UNIX without disturbing other processes that may be using the FP A. fparel can only be
run by the super-user.

After a successful pass, fparel writes

time, date: Sun FPA Passed. The contexts tested are: 0, 1, ... 31

to the file lusrladmldiaglog.

If a pass fails,fpaTel writes

time, date: Sun FP A failed

along with the test name and context number that failed, to the file lusTladmldiaglog.fpaTel then broadcasts
the message

time, date: Sun FP A failed, disabled, service required

to all users of the system. Next, fpaTel causes the kernel to disable the FP A. Once the kernel disables the
FP A, the system must be rebooted to make it accessible.

The file letclTc.local should contain an entry to cause fpaTel to be invoked upon reboot to be sure that the
FP A remains unaccessible in cases where rebooting doesn't correct the problem. See rc(8).

IUSTlliblcTontab should contain an entry indicating that cTon(8) is to run/paTel daily, such as:

7 2 * * * lusr/etc/fpalfparel

which causesfpaTel to run at seven minutes past two, every day. See cTon(8) and cTontab(5) for details.

OPTIONS
-pn Perform n passes. Default is n=1. -pO means perform 2147483647 passes.

-v Run in verbose mode with detailed test results to standard output.

FILES
lusTladmldiaglog Log of fpaTel diagnostics.

592 Last change: 30 June 1986 Sun Release 3.4

IOSTAT(8) MAINTENANCE COMMANDS IOSTAT(8)

NAME
iostat - report I/O statistics

SYNOPSIS
iostat [interval [count]]

DESCRIPTION

FILES

[ostat iteratively reports the number of characters read and written to terminals, and, for each disk, the
number of seeks and transfers per second, and the milliseconds per average seek. It also gives the percen­
tage of time the system has spent in user mode, in user mode running low priority (niced) processes, in sys­
tem mode, and idling.

To compute this information, for each disk, seeks and data transfer completions and number of words
transferred are counted; for terminals collectively, the number of input and output characters are counted.
Also, each fiftieth of a second, the state of each disk is examined and a tally is made if the disk is active.
From these numbers and given the transfer rates of the devices it is possible to determine average seek
times for each device.

The optional interval argument causes iostat to report once each interval seconds. The first report is for all
time since a reboot and each subsequent report is for the last interval only.

The optional count argument restricts the number of reports.

ldevlkmem
Ivrnunix

SEE ALSO
vrnstat(8)

Sun Release 3.4 Last change: 1 February 1985 611

KADB(8S) MAINTENANCE COMMANDS KADB(8S)

NAME
kadb - adb-like kernel and standalone-program debugger

SYNOPSIS
> b kadb [-d] [boot-flags]

DESCRIPTION
kadb is an interactive debugger that is similar in operation to adb(l), and runs as a standalone program
under the PROM monitor. You can use kadb to debug the UNIX kernel, or to debug any standalone pro­
gram.

Unlike adb, kadb runs in the same supervisor virtual address space as the program being debugged -
although it maintains a separate context. The debugger runs as a co process that cannot be killed (no :k) or
rerun (no :r). There is no signal control (no :i, :t, or $i), although the UNIX keyboard facilities ("C,"S and
"Q) are simulated.

While the kernel is running under kadb, the abort sequence (Ll.A or BREAK) causes UNIX to drop into kadb
for debugging - as will a system panic. When running other standalone programs under kadb , the abort
sequence will pass control to the PROM monitor. kadb is then invoked from the monitor by jumping to the
starting address for kadb found in <debugldebug.h> (currently this can be done for both Sun-2 and Sun-3
machines with the monitor command g rdOOOOO). kadb's user interface is similar to adb. Note that kadb
prompts with

kadb>

Most adb commands function in kadb as expected. Typing an abort sequence in response to the prompt
returns you to the PROM monitor, from which you can examine control spaces that aren't accessible within
adb or kadb. The PROM monitor command c will return control to kadb. As with "adb -k", $p works
when debugging UNIX kernels (by actually mapping in new user pages). The verbs? and I are equivalent
in kadb , since there is only one address space in use.

OPTIONS
kadb is booted from the PROM monitor as a standalone program. If you omit the -d flag, kadb automati­
cally loads and runs vmunix from the filesystem kadb was loaded from. The kadb "vmunix" variable can
be patched to change the default program to be loaded.

-d Interactive startup. Prompts with

kadb:

for a file to be loaded. >From here, you can enter a boot sequence line to load a standalone pro­
gram. Boot flags entered in response to this prompt are included with those already set and passed
to the program. If you type a carriage return only, kadb loads vmunix from the filesystem that
kadb was loaded from.

boot-flags
You can specify boot flags as arguments when invoking kadb. Note that kadb always sets the-d
(debug) boot flag, and passes it to the program being debugged.

USAGE

612

Refer to adb in Program Debugging Tools for the Sun Workstation.

Kernel Macros
As with adb, kernel macros are supported. With kadb, however, the macros are compiled into the
debugger itself, rather than being read in from the filesystem. The kadb command $M lists macros known
tokadb.

Setting Breakpoints
Self-relocating programs such as the Sun-3 kernel need to be relocated before breakpoints can be used. To
set the first breakpoint for such a program, start it with :s; kadb is then entered after the program is relo­
cated (when UNIX initializes its interrupt vectors). Thereafter, :s single-steps as with adb. Otherwise, use
:c to start up the program.

~tchange:7ApriI1987 Sun Release 3.4

KADB(8S) MAINTENANCE COMMANDS KADB(8S)

Automatic Rebooting with Kadb
You can set up your workstation to automatically reboot kadb by patching the Uvmunix" variable in tboot
with the string "kadb" instead of "vmunix". (Refer to adb in Program Debugging Tools for the Sun
Workstation for details on how to patch executables.)

Kadb on a Diskless Workstation

FILES

If your workstation is set up to boot over the network from a partition other than pubO, then you should
patch the short kadb variable "ndbootdev" to be "OxO", for the private nd partition, or "Ox4t", for the
pub1 nd partition. This will insure that the file to be debugged and kadb come from the same nd filesystem.

If "ndbootdev" is not patched, then you must be explicit when booting with kadb. Use the command

> b kadb-d

so that kadb will prompt for the program to be debugged At the prompt use the commmand

kadb: device(, J p)filename

where pis "Oxt" for the pub1 nd partition or "Ox40" for the private nd partition. Note that these values
for p (partition) will work if the file to be debugged is in the same filesystem as kadb.

/vrnunix
/boot
Ikadb
/usf/include/debug! debug.h

SEE ALSO

BUGS

adb(t), boot(8S)
Program Debugging Tools/or the Sun Workstation
Writing Device Drivers/or the Sun Workstation

There is no floating-point support.

kadb cannot reliably single-step over instructions that change the status register.

When sharing the keyboard with UNIX the monitor's input routines can leave the keyboard in a confued
state. If this should happen, disconnect the keybooard momentarily and then reconnect it This forces the
keyboard to reset as well as initiating an abort sequence.

Most of the bugs listed in adb (1) also apply to kadb.

Sun Release 3.4 Last change: 7 April 1987 613

KGMON(8) MAINTENANCE COMMANDS KGMON(8)

NAME
kgmon - generate a dump of the operating system's profile buffers

SYNOPSIS
lusr/etclkgmon [-b] [-b] [-r] [-p] [system] [memory]

DESCRIPTION
Kgmon is a tool used when profiling the operating system. When no arguments are supplied, kgmon indi­
cates the state of operating system profiling as running, off, or not configured (see config(8». If the -p flag
is specified, kgmon extracts profile data from the operating system and produces a gmon.out file suitable for
later analysis by gprof(l).

OPTIONS

FILES

-b

-b

Resume the collection of profile data.

Stop the collection of profile data.

-p Dump the contents of the profile buffers into a gmon.out file.

-r Reset all the profile buffers. If the -p flag is also specified, the gmon.out file is generated before
the buffers are reset.

If neither -b nor -b is specified, the state of profiling collection remains unchanged. For example, if the
-p flag is specified and profile data is being collected, profiling is momentarily suspended, the operating
system profile buffers are dumped, and profiling is immediately resumed.

Ivmunix - the default system
ldevlkmem - the default memory

SEE ALSO
gprof (1), config(8)

DIAGNOSTICS

614

Users with only read permission on ldev/kmem cannot change the state of profiling collection. They can
get a gmon.out file with the warning that the data may be inconsistent if profiling is in progress.

Last change: 21 April 1983 Sun Release 3.4

MONITOR (8S) MAINTENANCE COMMANDS MONITOR (8S)

ks,sk select keyboard for input and screen for output

[AB]# set speed of serial port A (or B) to # (such as 1200,9600, ..)

e echo input to output

ne don't echo input to output

u addr set virtual serial port address to addr .

If no serial port is specified when changing speeds, the current input device is changed.

At power-up, the following default settings are used: the default console input device is the Sun
keyboard or if the keyboard is unavailable, serial port A. The default console output device is the
Sun screen or if the graphics board is unavailable, serial port A. All serial ports are set to 9600
Baud.

Vaddr} addr2 [size] Sun 3 only

display the contents of addresses from (lower) addr} to (higher) address addr2 in the format
specified by size:

b byte format (the default),

w word format, or

long word format

Enter return to pause for viewing; enter another return character resume the display. To
terminate the display at any time, press the space bar. Or, you can use AS and AQ to stop
and start the display.

For example, the following command displays the contents of virtual address space from
address Ox 1000 to 0x2000 in word format:

V lOO02000W

W [addr] [arg] Sun 3 only.

Vector to addr. arg is one of:

print prints the contents of virtual address addr as a string.

dump initiates a crash dump.

trace produces a stack trace.

X Sun 3 only

display a menu of extended tests to be presented, with loop and print options also selectable.
These test commands are provided to permit additional testing of such things as the I/O port con­
nectors at the handle edge of the CPU board, Video memory, workstation memory and the works­
tation keyboard, as well as permit the boot device paths to be tested.

Z [addr] Sun 3 only.

set a breakpoint at addr in the address space selected by the S command.

Sun Release 3.4 Last change: 9 Apri11986 633

MOUNT(8) MAINTENANCE COMMANDS MOUNT(8)

NAME
mount, umount - mount and dismount fllesystems

SYNOPSIS
letc/mount [-p]
letc/mount -a[fv] [-t type]
letc/mount [-frv] [-t type] [-0 options] Jsname dir
letc/mount [-vr] [-0 options]fsname I dir

letc/umount [-t type] [-b host]
letc/umount -a[v]
letc/umount [-v]

DESCRIPTION
mount announces to the system that a filesystemJsname is to be attached to the file tree at the directory dir.
The directory dir must already exist It becomes the name of the newly mounted root. The contents of dir
are hidden until the filesystem is unmounted. If fsname is of the form host:path the filesystem type is
assumed to be nfs.

umount announces to the system that the filesystemfsname previously mounted on directory dir should be
removed. Either the filesystem name or the mounted-on directory may be used.

mount and umount maintain a table of mounted filesystems in letclmtah. described in mtah(5). If invoked
without an argument, mount displays the table. If invoked with only one of fsname or dir mount searches
the file letclJstab (seefstab(5» for an entry whose dir or fsname field matches the given argument For
example, if this line is in letclJstab:

Idev/xyOg lusr 4.2 rw 11

then the commands mount Insr and mount Idev/xyOg are shorthand for mount Idev/xyOg lusr

MOUNT OPTIONS

634

-p Print the list of mounted filesystems in a format suitable for use in letclJstab.

-a Attempt to mount all the filesystems described in letclJstah. (In this case,fsname and dir are taken
from letclJstab.) If a type is specified all of the filesystems in letclJstab with that type is mounted.
Filesystems are not necessarily mounted in the order listed in letclJstab .

-r Fake a new tetclmtah entry, but do not actually mount any filesystems.

-v Verbose - mount displays a message indicating the filesystem being mounted.

-t The next argument is the filesystem type. The accepted types are: 4.2, and nrs; seefstab(5) for a
description of these filesystem types.

-r Mount the specified filesystem read-only. This is a shorthand for:

mount -0 ro fsname dir

Physically write-protected and magnetic tape filesystems must be mounted read-only, or errors
occur when access times are updated, whether or not any explicit write is attempted.

-0 Specify options. a list of comma seperated words from the list below. Some options are valid for
all filesystem types, while others apply to a specific type only.

options valid on all file systems (the default is rw,suid):

rw

ro

suid

nosuid

noauto

read/write.

read-only.

set-uid execution allowed.

set-uid execution not allowed.

do not mount this file system automatically (mount -a).

Last change: 13 January 1987 Sun Release 3.4

MOUNT(8) MAINTENANCE COMMANDS MOUNT(8)

options specific to 4.2 file systems (the default is noquota).

quota usage limits enforced.

noquota usage limits not enforced.

options specific to nfs (NFS) file systems (the defaults are:

fg,retry=10000,timeo=7 ,retrans=3,port=NFS _PORT ,hard

with defaults for rsize and wsize set by the kernel):

bg if the first mount attempt fails, retry in the background.

fg retry in foreground.

retry=n set number times to retry mount to n.

rsize=n set read buffer size to n bytes.

wsize=n set write buffer size to n bytes.

timeo=n set NFS timeout to n tenths of a second.

retrans=n set number of NFS retransmissions to n.

port=n set server IP port number to n.

soft return error if server doesn't respond.

bard retry request until server responds.

intr allow keyboard interrupts on hard mounts.

The bg option causes mount to run in the background if the server's mountd (8) does not respond.
mount attempts each request retry=n times before giving up. Once the filesystem is mounted,
each NFS request made in the kernel waits timeo=n tenths of a second for a response. If no
response arrives, the time-out is multiplied by 2 and the request is retransmitted. When retrans=n
retransmissions have been sent with no reply a soft mounted filesystem returns an error on the
request and a bard mounted filesystem prints a message and retries the request. Filesystems that
are mounted rw (read-write) should use the bard option. The intr option allows keyboard inter­
rupts to kill a process that is hung waiting for a response on a hard mounted filesystem. The
number of bytes in a read or write request can be set with the rsize and wsize options.

UMOUNT OPTIONS
-b host Unmount all filesystems listed in letclmtab that are remote-mounted from host.

-a Attempt to unmount all the filesystems currently mounted (listed in letclmtab). In this case,
fsname is taken from letclmtab.

-v Verbose - umount displays a message indicating the filesystem being unmounted.

EXAMPLES

FILES

mount Idev/xyOg lusr
mount -ft 4.2/dev/ndO I
mount -at 4.2
mount -t nfs serv:/usrlsrc lusrlsrc
mount serv:/usrlsrc lusrlsrc
mount -0 hard serv:/usrlsrc lusrlsrc
mount -p > letc/fstab

mount a local disk
fake an entry for nd root
mount all 4.2 filesystems
mount remote filesystem
same as above
same as above but hard mount
save current mount state

letc/mtab
letc/fstab

table of mounted filesystems
table of filesystems mounted at boot

Sun Release 3.4 Last change: 13 January 1987 635

MOUNT (8) MAINTENANCE COMMANDS MOUNT(8)

SEE ALSO

BUGS

636

mount(2), unmount(2), fstab(5), mountd(8C), nfsd(8C)

Mounting file systems full of garbage crashes the system.

No more than one NO client should mount an NO disk partition "read-write" or the file system may
become corrupted

H the directory on which a filesystem is to be mounted is a symbolic link, the filesystem is mounted on the
directory to which the symbolic link refers. rather than being mounted on top of the symbolic link itself.

Last change: 13 January 1987 Sun Release 3.4

SETUP(8S) MAINTENANCE COMMANDS SETUP(8S)

NAME
setup - Sun UNIX installation program

SYNOPSIS
setup

DESCRIPTION

FILES

BUGS

setup is the program supplied by Sun to install major Sun Unix releases such as 2.0 or 3.0. setup allows a
system administrator to install major Sun Unix release on new hardware, upgrade between major releases,
and add additional hardware to existing machines.

setup provide both a tty interface for cursor addressable terminals and a SunWindows system interface for
use on bit mapped displays. The Setup Reference Manual contains a detailed description of the use of
setup.

Initially, setup asks the following questions in a menu format before entering the tty or SunWindows inter­
face. For all menus respond to the » prompt with the corresponding number of the menu item you choose.

The first question asked is the mode of use of setup.
Are you running setup:

1) to install on a new system
2) re-entrantly
3) to upgrade an existing system
4) in demonstration mode

»
The next question is to determine the type of interface to be used. Note that the cursor addressable inter­
face can be used within a shelltool(l) under SunWindows.

Will you be running setup from:
1) a Sun bit mapped display device
2) a cursor addressable terminal

»
If you have selected the tty interface for cursor addressable terminals, setup asks for the terminal type.

Select your terminal type:
1) Televideo 925
2) Wyse Model 50
3) Sun Workstation
4) Other

»
If you select" Other", the name of the terminal must correspond to a name in the termcap (5) database.

Enter the terminal type (your terminal type must be in /etc/termcap) :
»

setup begins running the interface for the terminal-type you have selected.

letc!hosts
I etc! nd.loeal
letc!ethers
letclre.loeal
letc!re.boot
letc! setup.info
lusrllibl sendmail.cf

setup will not run on tty devices that do not support cursor addressing and are not registered in the
termeap(5) data base.

Sun Release 3.4 Last change: 13 January 1987 693

SHOWMOUNT (8) MAINTENANCE COMMANDS SHOWMOUNT (8)

NAME
showmount - show all remote mounts

SYNOPSIS
lusr/etclshowmount [-a] [-d] [-e] [host]

DESCRIPTION
Showmount lists all the clients that have remotely mounted a filesystem from host. This information is
maintained by the mountd(8C) server on host, and is saved across crashes in the file letclrmtab. The
default value for host is the value returned by hostname(I).

OPTIONS
-d List directories that have been remotely mounted by clients.

-a Print all remote mounts in the fonnat

hostnarne:directory

where hostname is the name of the client, and directory is the root of the file system that has been
mounted.

-e Print the list of exported file systems.

SEE ALSO
rmtab(5),mountd(8),eXJX?rts(5)

BUGS
If a client crashes, its entry will not be removed from the list until it reboots and executes umount -a.

694 Last change: 1 February 1985 Sun Release 3.4

STATD(8C)

NAME
statd - network status monitor

SYNOPSIS
/ etc/rpc.statd

DESCRIPTION

MAINTENANCE COMMANDS STATD(8C)

Statd is an intermediate version of the status monitor. It interacts with lockd(8c) to provide the crash and
recovery functions for the locking services on NFS.

FILES
/etc! statmon/current
/etc!statmon/backup
/ etc! statmon/ state

SEE ALSO
lockd(8C), statmon(5)

BUGS
The crash of a site is only detected upon its recovery.

Sun Release 3.4 Last change: 16 July 1986 699

STICKY (8) MAThnENANCECO~ANDS STICKY(8)

NAME
sticky - executable files with persistent text

DESCRIPTION

700

While the 'sticky bit', mode 01000 (see chmod(2», is set on a sharable executable file, the text of that file
will not be removed from the system swap area. Thus the file does not have to be fetched from the file sys­
tem upon each execution. As long as a copy remains in the swap area, the original text cannot be overwrit­
ten in the file system, nor can the file be deleted. Directory entries can be removed so long as one link
remains.

Sharable files are made by the -z option of Id(I).

To replace a sticky file that has been used:

1. Clear the sticky bit with chmod(lV).

2. Execute the old program to fiush the swapped copy. This can be done safely even if others are
using it.

3. Overwrite the sticky file. If the file is being executed by any process, writing will be prevented; it
suffices to simply remove the file and then rewrite it, being careful to reset the owner and mode
with chmod and chown(2).

4. Set the sticky bit once again, if still needed.

A directory for which the 'sticky bit' is set restricts deletion of files it contains. A file in a sticky directory
may only be removed or renamed by a user who has write permission on the directory, and either owns the
file, owns the directory, or is the super-user. This is useful for directories such as Itmp, which must be pub­
licly writable, but which should deny users access to arbitrarily delete or rename the files of others.

Any user may create a sticky directory. Only the super-user can set the sticky bit on a non-directory file.

Last change: 28 October 1983 Sun Release 3.4

CHMOD(2) SYSTEM CALLS CHMOD(2)

NAME
chmod, fchmod - change mode of file

SYNOPSIS
#include lusr/includelsyslstat.h

chmod(path, mode)
char .path;
intmode;

rchmod(rd, mode)
int rd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fd has its mode changed to mode.
Modes are constructed by or'ing together some combination of the following:

S ISUID
S ISGID
S ISVTX
S IREAD
S IWRITE
S !EXEC

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution (sticky bit)
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

These bit patterns are defined in lusr/includelsyslstat.b.

The effective user ID of the process must match the owner of the file or be super-user to change the mode
of a file.

If the effective user ID of the process is not super-user and the process attempts to set the set group ID bit
on a file owned by a group which is not in its group access list, mode bit 02000 (set group ID on execution)
is cleared

If an executable file is set up for sharing (this is the default) then mode 01000 (save text image after execu­
tion) prevents the system from abandoning the swap-space image of the program-text portion of the file
when its last user terminates. If this mode is set on a directory, an unprivileged user may not delete or
rename files of other users in that directory. If the effective user ID of the process is not super-user and the
object is not a directory, this bit is cleared.

If a user other than the super-user writes to a file, the set user ID and set group ID bits are turned off. This
makes the system somewhat more secure by protecting set-user-ID (set-group-ID) files from remaining
set-user-ID (set-group-ID) if they are modified, at the expense of a degree of compatibility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
chmod will fail and the file mode will be unchanged if:

ENOTDIR A component of the path prefix of path is not a directory.

EINV AL path contains a byte with the high-order bit set

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT

EACCES

Sun Release 3.4

The file referred to by path does not exist.

Search permission is denied for a component of the path prefix of path.

Last change: 14 January 1987 23

CHMOD(2) SYSTEM CALLS CHMOD(2)

ELOOP Too many symbolic links were encountered in translating path.

EPERM The effective user ID does not match the owner of the file and the effective user ID is

FILES

not the super-user.

EINV AL fd refers to a socket, not to a file.

EROFS The file referred to by path resides on a read-only file system.

EFAULT path points outside the process's allocated address space.

EIO An 110 error occurred while reading from or writing to the file system.

fchmod will fail if:

EBADF The descriptor is not valid.

EROFS The file referred to by fd resides on a read-only file system.

EPERM

EIO

The effective user ID does not match the owner of the file and the effective user ID is
not the super-user.

An 110 error occurred while reading from or writing to the file system.

lusr/include/sys/stath

SEE ALSO
open(2V), chown(2), stat(2), sticky(8)

24 Last change: 14 January 1987 Sun Release 3.4

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

NAME
getrlimit, setrlirnit - control maximum system resource consumption

SYNOPSIS
#include <sysltime.h>
#include <syslresource.h>

getrIimit(resource, rIp)
int resource;
struct rlimit *rlp;

setrlimit(resource, rip)
int resource;
struct rlimit *rlp;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it creates may be
obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT CPU the maximum amount of cpu time (in seconds) to be used by each process.

RLIMIT FSIZE the largest size, in bytes, of any single file that may be created.

RLIMIT DATA the maximum size, in bytes, of the data segment for a process; this defines how far a
program may extend its break with the sbrk(2) system call.

RLIMIT STACK the maximum size, in bytes, of the stack segment for a process; this defines how far a
program's stack segment may be extended automatically by the system.

the largest size, in bytes, of a core file that may be created

RLIMIT RSS the maximum size, in bytes, to which a process's resident set size may grow. This
imposes a limit on the amount of physical memory to be given to a process; if
memory is tight, the system will prefer to take memory from processes that are
exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process may.
receive a signal (for example, if the cpu time is exceeded), but it will be allowed to continue execution until
it reaches the hard limit (or modifies its resource limit). The rlimit structure is used to specify the hard and
soft limits on a resource,

struct rlimit {

};

int
int

rlim_cur;
rlim_max;

1* current (soft) limit *1
1* hard limit *1

Only the super-user may raise the maximum limits. Other users may only alter rlim _cur within the range
from 0 to rlim_max or (irreversibly) lower rUm_max.

An "infinite" value for a limit is defined as RLIM _INFINITY (Ox7fffffft).

Because this information is stored in the per-process information, this system call must be executed directly
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to
csh(I).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way:
a brk or sbrk call will fail if the data space limit is reached, or the process will be killed when the stack
limit is reached (since the stack cannot be extended, there is no way to send a signal!).

A file I/O operation which would create a file that is too large will cause a signal SIGXFSZ to be gen­
erated; this normally terminates the process, but may be caught. When the soft CPU time limit is exceeded,
a signal SIGXCPU is sent to the offending process.

Sun Release 3.4 Last change: 6 January 1987 57

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit. A return value
of -1 indicates that an error occurred, and an error code is stored in the global location errno.

ERRORS
The possible errors are:

EFAUL T The address specified for rip is invalid.

EINVAL

EPERM

An invalid resource was specified; or in a setrlimit call, the new rlim_cur exceeds the
new rUm max.

The limit specified to setrlimit would have raised the maximum limit value, and the
caller is not the super-user.

SEE ALSO
c~h(I), quota(2)

BUGS
There should be limit and unlimit commands in sh(l) as well as in csh.

58 Last change: 6 January 1987 Sun Release 3.4

GETIIMEOFDA Y (2) SYSTEM CALLS GETIIMEOFDAY (2)

NAME
gettimeofday, settimeofday - get or set the date and time

SYNOPSIS
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct time zone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
The system's notion of the current Greenwich time and the current time zone is obtained with the get­
timeofday call, and set with settimeofday. The current time is expressed in elapsed seconds and
microseconds since, January 1, 1970 (zero hour). The resolution of the system clock is hardware depen­
dent; the time may be updated continuously, or in "ticks."

The structures pointed to by tp and tzp are defined in <sysltime.h> as:

struct timeval {
long
long

};

struct timezone {

1* seconds since Jan. 1, 1970 *1
1* and microseconds *1

int tz _ minuteswest; 1* of Greenwich */
int tz _ dsttime; /* type of dst correction to apply *1

};

The timezone structure indicates the local time zone (measured in minutes westward from Greenwich), and
flag that indicates the type of Daylight Saving Time correction to apply. Note that this flag does not indi­
cate whether DST is currently in effect.

If tzp is a zero pointer, the timezone information is not returned or set.

Only the super-user may set the time of day or the time zone.

RETURN
A -1 return value indicates an error occurred; in this case an error code is stored in the global variable
errno. Other return codes indicate the type of Daylight Savings Time currently in effect (as defined in
lusrlincludel sysltime.h):

o DST _NONE: Daylight Savings Time not observed
1 DST USA: United States DST
2 DST AUST: Australian DST
3 DST _WET: Western European DST
4 DST _MET: Middle European DST
5 DST _ EET: Eastern European DST
6 DST _CAN: Canadian DST
7 DST GB: Great Britian and Eire DST
8 DST RUM: Rumanian DST
9 DST TUR: Turkish DST
10 DST _ AUST ALT: Australian-style DST with shift in 1986

ERRORS
The following error codes may be set in errrw:

EFAUL T An argument address referenced invalid memory.

Sun Release 3.4 Last change: 5 February 1987 63

GETIIMEOFDAY (2) SYSTEM CALlS GETTIMEOFDAY(2)

EPERM A user other than the super-user attempted to set the time.

SEE ALSO

BUGS

64

date(l), adjtime(2), ctime(3)

Time is never correct enough to believe the microsecond values. There should a mechanism by which, at
least, local clusters of systems might synchronize their clocks to millisecond granularity.

Daylight Savings Time correction tables aren't guaranteed to be correct for specific locales.

Last change: 5 February 1987 Sun Release 3.4

GETUID(2)

NAME
getuid, geteuid - get user identity

SYNOPSIS
uid = getnidO
int uid;

euid = geteuidO
int enid;

DESCRIPTION

SYSTEM CALLS

Getuid returns the real user ID of the current process, geteuid the effective user ID.

GETUID(2)

The real user ID identifies the person who is logged in. The effective user ID gives the process additional
permissions during execution of "set-user-ID" mode processes, which use getuid to determine the real­
user-id of the process that invoked them.

SEE ALSO
getgid(2), setneuid(2)

Sun Release 3.4 Last change: 16 July 1986 64a

READ (2V) SYSTEM CALLS READ (2V)

NAME
read, readY - read input

SYNOPSIS
cc = read(d, bur, nbytes)
iot cc, d;
char *bur;
iot obytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovcot)
iot cc, d;
struct iovec * iov;
iot iovcot;

DESCRIPTION
read attempts to read nbytes of data from the object referenced by the descriptor d into the buffer pointed to
by buf. ready performs the same action, but scatters the input data into the iovcnt buffers specified by the
members of the iov array: iov[O], iov[1], ... , iov[iovcnt-1].

For readv, the iovec structure is defined as

sttuct iovec {
caddr _ t iov _base;
int iov _len;

};

Each iovec entry specifies the base address and length of an area in memory where data should be placed.
readv will always fill an area completely before proceeding to the next

On objects capable of seeking, the read starts at a position given by the pointer associated with d (see
lseek(2». Upon return from read, the pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of the pointer
associated with such an object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and placed in the
buffer. The system guarantees to read the number of bytes requested if the descriptor references a normal
file which has that many bytes left before the end-of-file, but in no other case.

If the returned value is 0, then end-of-file has been reached.

When attempting to read from a descriptor associated with an empty pipe, socket, or FIFO:

If 0_ NDELA Y is set, the read will return a -1 and errno will be set to EWOULDBLOCK.

If 0_ NDELA Y is clear, the read will block until data is written to the pipe or the file is no longer
open for writing.

When attempting to read from a descriptor associated with a tty that has no data currently available:

If 0 _NDELA Y is set, the read will return a -1 and e"no will be set to EWOULDBLOCK.

If 0_ NDELA Y is clear, the read will block until data becomes available.

If 0 _NDELA Y is set, and less data are available than are requested by the read or readv, only the data that
are available are returned, and the count indicates how many bytes of data were actually read.

SYSTEM V DESCRIPTION
When an attempt is made to read a descriptor which is in no-delay mode, and there is no data currently
available, read will return a 0 instead of returning a -1 and setting errno to EWOULDBLOCK. Note that this
is indistinguishable from end-of-file.

Sun Release 3.4 Last change: 25 July 1986 95

READ (2V) SYSTEM CALLS READ (2V)

RETURN VALUE
H successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and the global vari­
able e"no is set to indicate the error.

ERRORS
read and readv will fail if one or more of the following are true:

EBADF d is not a valid file descriptor open for reading.

EISDIR

EFAULT
EIO

EINTR

EINVAL

d refers to a directory which is on a file system mounted using the NFS.

but points outside the allocated address space.

An I/O error occurred while reading from or writing to the file system.

A read from a slow device was interrupted before any data arrived by the delivery of a
signal.

The pointer associated with d was negative.

EWOULDBLOCK

EINVAL

EINVAL

EINVAL

EFAULT

The file was marked for non-blocking I/O, and no data were ready to be read. In addi­
tion, readY may return one of the following errors:

Iovcnt was less than or equal to 0, or greater than 16.

One of the iov _len values in the iov array was negative.

The sum of the iov _len values in the iov array overflowed a 32-bit integer.

Part of iov points outside the process's allocated address space.

SEE ALSO
dup(2), fcntl(2), open(2), pipe(2), select(2), socket(2), socketpair(2)

96 Last change: 25 July 1986 Sun Release 3.4

SHMGET(2) SYSTEM CALLS SHMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2),shnnctl(2),shmop(2)

Sun Release 3.4 Last change: 29 April 1986 117

SHMOP(2) SYSTEM CALLS SHMOP(2)

NAME
shmop, shmat, shmdt - shared memory operations

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslshm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr
intshm8g;

int shmdt (shmaddr)
char *shmaddr

DESCRIPTION
shmat attaches the shared memory segment associated with the shared memory identifier specified by
shmid to the data segment of the calling process. The segment is attached at the address specified by one of
the following criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as selected by the
system.

If shmaddr is not equal to zero and (shmflg & SIIM_RND) is "true", the segment is attached at
the address given by (shmaddr - (shmaddr modulus SIIMLBA».

If shmaddr is not equal to zero and (shmflg & SHM_RND) is "false", the segment is attached at
the address given by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is "true" {READ}, otherwise it is
attached for reading and writing {READ/WRITE}.

shmdt detaches from the calling process's data segment the shared memory segment located at the address
specified by shmaddr.

ERRORS

118

shmat will fail and not attach the shared memory segment if one or more of the following are true:

EINV AL Shmid is not a valid shared memory identifier.

EACCES Operation permission is denied to the calling process (see intro(2».

ENOMEM The available data space is not large enough to accommodate the shared memory seg­
ment.

EINVAL

EINVAL

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr modulus
SHMLBA» is an illegal address.

shmaddr is not equal to zero, (shmflg & SIIM_RND) is "false", and the value of
shmaddr is an illegal address.

EMFILE The number of shared memory segments attached to the calling process would exceed
the system-imposed limit.

shmdt will fail and not detach the shared memory segment if:

EINV AL shmaddr is not the data segment start address of a shared memory segment

Last change: 29 April 1986 Sun Release 3.4

SHMOP(2) SYSTEM CALLS

RETURN VALUES
Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the attached shared memory segment.

shmdt returns a value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2).

Sun Release 3.4 Last change: 29 April 1986

SHMOP(2)

119

SHUTDOWN (2) SYSTEM CALLS

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION

SHUTDOWN (2)

The shutdown call causes all or part of a fu11-duplex connection on the socket associated with s to be shut
down. If how is 0, then further receives will be disallowed If how is 1, then further sends will be disal­
lowed. If how is 2, then further sends and receives will be disallowed

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF
ENOTSOCK

ENOTCONN

S is not a valid descriptor.

S is a file, not a socket

The specified socket is not connected

SEE ALSO
connect(2), sock.et(2)

BUGS
The how values should be defined constants.

120 Last change: 29 August 1983 Sun Release 3.4

SOCKET (2) SYSTEM CALLS SOCKET (2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

s = socket(ar, type, protocol)
iot s, ar, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The at parameter specifies an address format with which addresses specified in later operations using the
socket should be interpreted These formats are defined in the include file <syslsocket.h>. The currently
understood formats are

AF UNIX
AF INET
AFPUP
AF IMPLINK

(UNIX path names),
(ARPA Internet addresses),
(Xerox PUP-I Internet addresses), and
(IMP "host at IMP" addresses).

The socket has the indicated type which specifies the semantics of communication. Currently defined types
are:

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK_ SEQPACKET
SOCK RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams with an
out-of-band data transmission mechanism. A SOCK _ DGRAM socket supports datagrarns (connectionless,
unreliable messages of a fixed (typically small) maximum length). SOCK_RAW sockets provide access to
internal network interfaces. The types SOCK_RAW, which is available only to the super-user, and
SOCK _ SEQPACKET and SOCK_ROM, which are planned, but not yet implemented, are not described
here.

The protocol specifies a particular protocol to be used with the socket Normally only a single protocol
exists to support a particular socket type using a given address format However, it is possible that many
protocols may exist in which case a particular protocol must be specified in this manner. The protocol
number to use is particular to the "communication domain" in which communication is to take place; see
services(5) and protocols (5).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be
in a connected state before any data may be sent or received on it A connection to another socket is
created with a connect(2) call. Once connected, data may be transferred using read(2V) and write(2V)
calls or some variant of the send(2) and recv(2) calls. When a session has been completed a close (2) may
be performed. Out-of-band data may also be transmitted as described in send(2) and received as described
in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not lost or dupli­
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with -1 returns and with ETIMEDOUT as the specific code in the global variable ermo. The protocols
optionally keep sockets "warm" by forcing transmissions roughly every minute in the absence of other
activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this
causes naive processes, which do not handle the signal, to exit

Sun Release 3.4 Last change: 13 November 1986 129

SOCKET (2) SYSTEM CALLS SOCKET(2)

SOCK _ DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents narned in
sen.d(2) calls. It is also possible to receive datagrams at such a socket with recv(2).

Anfcntl(2) call can be used to specify a process group to receive a SIGURG signal when the out-of-band
data arrives.

The operation of sockets is controlled by socket level options. These options are defined in the file
<SJslsocket.h> and explained below. Setsockopt and getsockopt(2) are used to set and get options, respec­
tively.

SO DEBUG turn on recording of debugging information
SO REUSEADDR allow local address reuse
SO KEEPALIVE keep connections alive
SO DONTROUTE do no apply routing on outgoing messages
SO LINGER linger on close if data present
SO DONTLINGER do not linger on close

SO_DEBUG enables debugging in the underlying protocol modules. SO REUSEADDR indicates the
rules used in validating addresses supplied in a bin.d(2) call should allow reuse of local addresses.
SO _ KEEP ALIVE enables the periodic transmission of messages on a connected socket. Should the con­
nected party fail to respond to these messages, the connection is considered broken and processes using the
socket are notified via a SIGPIPE signal. SO _ DONTROUTE indicates that outgoing messages should
bypass the standard routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address. SO _LINGER and SO _ DON1LINGER control
the actions taken when unsent messags are queued on socket and a close(2) is performed. If the socket
promises reliable delivery of data and SO_LINGER is set, the system will block the process on the close
attempt until it is able to transmit the data or until it decides it is unable to deliver the information (a
timeout period, termed the linger interval, is specified in the setsockopt call when SO_LINGER is
requested). If SO _ DONTLINGER is specified and a close is issued, the system will process the close in a
manner which allows the process to continue as quickly as possible.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the socket

ERRORS
The socket call fails if:

EAFNOSUPPORT The specified address family is not supported in this version of the system.

ESOCKTNOSUPPORT

EPROTONOSUPPORT

EMFll..E

ENOBUFS

EPROTOTYPE

The specified socket type is not supported in this address family.

The specified protocol is not supported

The per-process descriptor table is full.

No buffer space is available. The socket cannot be created.

The protocol is the wrong type for the socket.

SEE ALSO

BUGS

130

accept(2), bind(2), connect(2), getsocmarne(2), getsockopt(2), ioct1(2), listen(2), recv(2), select(2),
send(2),shutdown(2),socke~aUi2)

Inter-Process Communication Primer in Networking on the Sun Workstation

The use of keepalives is a questionable feature for this layer.

Last change: 13 November 1986 Sun Release 3.4

FREXP(3) C LmRARY FUNCTIONS FREXP(3)

NAME
frexp, ldexp, modi - floating point analysis and synthesis

SYNOPSIS
double frexp(value, eptr)
double value;
int *eptr;

double Idexp(value, exp)
double value;
int exp;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Frexp returns the significand of a double value as a double quantity, x, of magnitude less than 1 and stores
an integer n, indirectly through eptr, such that value = x* 2n.

The resul~ are not defined when value is an IEEE infinity or NaN.

ldexp returns the quantity:

value * 2exP.

mod/returns the fractional part of value and stores the integral part indirectly through iptr. Thus the argu­
ment value and the returned values mod/and *iptr satisfy, in the absence of rounding error,

(* iptr + mod/) == value

and

o <= abs(modf) < abs(value).

The signs of *iptr and mod/ are the same as the signs of value. The resul~ are not defined when value is an
IEEE infinity or NaN.

Since Sun's definition of mot!fconforrns to the System V Interface Definition and the V AX 4.2BSD imple­
mentation but differs from the 4.2BSD documentation, results vary from some other Unix implementations
whose modf confonns to the 4.2BSD documentation but not the V AX 4.2BSD implementation. Therefore
avoid mod! in code intended to be portable.

SEE ALSO
fioor(3m)

Sun Release 3.4 Last change: 16 September 1986 183

FfOK(3) C LmRARY FUNCTIONS FrOK(3)

NAME
ftak - standard intetprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <syS/ipc.h>

key_t ftok(path, id)
char .path;
char id;

DESCRIPTION
All intetprocess communication facilities require the user to supply a key to be used by the msgget(2),
semget(2), and shmget(2) system calls to obtain interprocess communication identifiers. One suggested
method for forming a key is to use the ftok subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining portion as a sequence number.
There are many other ways to form keys, but it is necessary for each system to define standards for forming
them. If some standard is not adhered to, it will be possible for unrelated processes to unintentionally inter­
fere with each other's operation. Therefore, it is strongly suggested that the most significant byte of a key
in some sense refer to a project so that keys do not con1lict across a given system.

ftok returns a key based on path and id that is usable in subsequent msgget, semget, and shmget system
calls. path must be the path name of an existing file that is accessible to the process. id is a character
which uniquely identifies a project. Note thatftok will return the same key for linked files when called with
the same id and that it will return different keys when called with the same file name but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2)

DIAGNOSTICS
ftok returns (key _ t) -1 if path does not exist or if it is not accessible to the process.

WARNING

184

If the file whose path is passed to ftok is removed when keys still refer to the file, future calls to ftok with
the same path and id will return an error. If the same file is recreated, thenftok is likely to return a dif­
ferent key than it did the original time it was called.

Last change: 30 April 1986 Sun Release 3.4

UTIME(3C) COMPATIBll..ITY ROUTINES UTIME(3C)

NAME
utime - set file times

SYNOPSIS
#include <sys/types.h>

utime(me, timep)
char .me;
time _ t timep[2);

DESCRIPTION
The utime call uses the 'accessed' and 'updated' times in that order from the timep vector to set the
corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The 'inode-changed' time of the file is set to the
current time.

SEE ALSO
utimes(2), stat(2)

Sun Release 3.4 Last change: 1 April 1983 269

VLIMIT(3C) COMPATIBll..ITY ROUTINES VLIMIT(3C)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/vlimit.h>

vlimit(resource, value) int resource, value;

DESCRIPTION
This facility is superseded by getrlimit(2).

Limits the consumption by the current process and each process it creates to not individually exceed value
on the specified resource. If value is specified as -1, then the current limit is returned and the limit is
unchanged. The resources which are currently controllable are:

LIM_NORAISE A pseudo-limit; if set non-zero then the limits may not be raised. Only the super-user
may remove the noraise restriction.

LIM CPU the maximum number of cpu-seconds to be used by each process

LIM FSIZE the largest single file which can be created

LIM DATA the maximum growth of the data+stack region via sbrk(2) beyond the end of the pro-
gram text

LIM _ STACK the maximum size of the automatically-extended stack region

LIM CORE the size of the largest core dump that will be created

LIM_MAXRSS a soft limit for the amount of physical memory (in bytes) to be given to the program. If
memory is tight, the system will prefer to take memory from processes which are
exceeding their declared LIM _ MAXRSS.

Because this information is stored in the per-process information this system call must be executed directly
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to
csh(l).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way;
a break call fails if the data space limit is reached, or the process is killed when the stack limit is reached
(since the stack cannot be extended, there is no way to send a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIOXFSZ to be gen­
erated, this normally terminates the process, but may be caught. When the cpu time limit is exceeded, a
signal SIOXCPU is sent to the offending process; to allow it time to process the signal it is given 5 seconds
grace by raising the cpu time limit.

SEE ALSO
csh(l)

BUGS

270

If LIM _ NORAISE is set, then no grace should be given when the cpu time limit is exceeded.

There should be limit and unlimit commands in sh(l) as well as in csh.

Last change: 13 January 1987 Sun Release 3.4

FOPEN(3S) STANDARD I/O LIBRARY FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(filename, type)
char *fiIename, *type;

FILE *freopen(fiIename, type, stream)
char *fiIename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION
fopen opens the file narned by filename and associates a stream with it. If the open succeeds, fopen returns
a pointer to be used to identify the stream in subsequent operations.

filename points to a character string that contains the name of the file to be opened.

type is a character string having one of the following values:

"r" open for reading

"w" truncate or create for writing

"a" append: open for writing at end of file, or create for writing

"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

freopen opens the file named by filename and associates the stream pointed to by stream with it. The type
argument is used just as in jopen. The original stream is closed, regardless of whether the open ultimately
succeeds. If the open succeeds,Jreopen returns the original value of stream.

freopen is typically used to attach the preopened streams associated with stdin, stdout, and stderr to other
files.

fdopen associates a stream with a file descriptor. File descriptors are obtained from calls like open, dup,
creat, or pipe(2), which open files but do not return streams. Streams are necessary input for many of the
Section 3S library routines. The type of the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream. However,
output may not be directly followed by input without an interveningfseek or rewind, and input may not be
directly followed by output without an intervening fseek, rewind, or an input operation which encounters
end-of-file.

SEE ALSO
open(2V), fc1ose(3S), fseek(3S), fopen(3V)

DIAGNOSTICS

BUGS

fopen,freopen, andfdopen return a NULL pointer on failure.

In order to support the same number of open files as the system does, fopen must allocate additional
memory for data structures using calloc after 30 files have been opened. This confuses some programs
which use their own memory a1locators.

Sun Release 3.4 Last change: 13 January 1987 335

FREAD(3S) STANDARD I/O LmRARY FREAD (3S)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <stdio.h>

fread(ptr, size, nitems, stream)
FILE *stream;

fwrite(ptr, size, nitems, stream)
FILE *stream;

DESCRIPTION
fread reads, into a block pointed to by ptr, nitems of data from the named input stream, where an item of
data is a sequence of bytes (not necessarily terminated by a null byte) of length size. It returns the number
of items actually read. fread stops appending bytes if an end-of-file or error condition is encountered while
reading stream, or if nitems items have been read. fread leaves the file pointer in stream, if defined, point­
ing to the byte following the last byte read if there is one. fread does not change the contents of stream.

If the standard output is line-buffered, fread flushes its output before reading from the standard input. This
is also true for the standard e"or.

/write appends at most nit ems of data from the block pointed to by ptr to the named output stream. It
returns the number of items actually written. /write stops appending when it has appended nitems items of
data or if an error condition is encountered on stream. /write does not change the contents of the block
pointed to by ptr.

The argument size is typically sizeof(*ptr) where the pseudo-function sizeofspecifies the length of an item
pointed to by ptr. If plr points to a data type other than char it should be cast into a pointer to char.

If size or nitems is non-positive, no characters are read or written and 0 is returned by both fread and
/write.

SEE ALSO
read(2V), write(2V), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S), fread(3V)

DIAGNOSTICS
fread and /write return 0 upon end of file or error.

336 Last change: 15 April 1986 Sun Release 3.4

PUTS (3S) STANDARDIJOLmRARY

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION

PUTS (3S)

puts writes the null-terminated string pointed to by s, followed by a newline character, to the standard out­
put stream stdout.

fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminal null character.

DIAGNOSTICS
Both routines renun EOF on error. This will happen if the routines try to write on a file that has not been
opened for writing.

SEE ALSO
fopen(3S), putc(3S), printf(3S), ferror(3S), fread(3S)

NOTES
puts appends a newline while fputs does not.

Sun Release 3.4 Last change: April 15 1986 345

SCANF(3S) STANDARD I/O LIBRARY SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf(format [, pointer] . ..)
char *format;

fscanf(stream, format [, pointer] ...)
FILE *stream;
char *format;

sscanf(s, format [, pointer] ...)
char *s, *format;

DESCRIPTION

346

scanf reads from the standard input stream stdin. fscanf reads from the named input stream. sscanf reads
from the character string s. Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control stringformat, described below,
and a set of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. White-space characters (blanks, tabs, or new-lines) which, except in two cases described below, cause
input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next character of the input stream.
3. Conversion specifications, consisting of the character %, an optional assignment suppressing character

*, an optional numerical maximum field width, an optional I (ell) or h indicating the size of the receiv­
ing variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by *. The
suppression of assignment provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted. For all descriptors except "[" and "c", white space leading an input
field is ignored.
The conversion character indicates the interpretation of the input field; the corresponding pointer argument
must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following
conversion characters are legal:
% a single % is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an integer pointer.
u an unsigned decimal integer is expected; the corresponding argument should be an unsigned

integer pointer.
o an octal integer is expected; the corresponding argument should be a integer pointer.
x a hexadecimal integer is expected; the corresponding argument should be an integer pointer.
e,f,g a floating point number is expected; the next field is converted accordingly and stored through the

corresponding argument, which should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits, possibly containing a decimal point, followed by
an optional exponent field consisting of an E or e followed by an optional +, -, or space, followed
by an integer.

s a character string is expected; the corresponding argument should be a character pointer pointing
to an array of characters large enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a white space character.

c a character is expected; the corresponding argument should be a character pointer. The normal
skip over white space is suppressed in this case; to read the next non-space character, use % Is. If
a field width is given, the corresponding argument should refer to a character array, and the indi­
cated number of characters is read.

Last change: 18 February 1987 Sun Release 3.4

SCANF(3S) STANDARD 110 LffiRARY SCANF(3S)

indicates string data; the normal skip over leading white space is suppressed. The left bracket is
followed by a set of characters, which we will call the scanset, and a right bracket; the input field
is the maximal sequence of input characters consisting entirely of characters in the scanset. The
circumflex ("'), when it appears as the first character in the scanset, serves as a complement opera­
tor and redefines the scanset as the set of all characters not contained in the remainder of the scan­
set string. There are some conventions used in the construction of the scanset. A range of charac­
ters may be represented by the construct first-last, thus [0123456789] may be expressed [0-9].
Using this convention, first must be lexically less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is the first or the last character in the
scanset. To include the right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset, and in this case it will not be
syntactically interpreted as the closing bracket. The corresponding argument must point to a char­
acter array large enough to hold the data field and the terminating \0, which will be added
automatically. At least one character must match for this conversion to be considered successful.

The conversion characters d, U, 0, and x may be capitalized or preceded by I or h to indicate that a pointer
to long or to short rather than to int is in the argument list Similarly, the conversion characters e, f, and g
may be preceded by I to indicate that a pointer to double rather than to Boat is in the argument list The I or
h modifier is ignored for other conversion characters.

scan/ conversion terminates at EOF, at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is left unread in the input stream.

scan/returns the number of successfully matched and assigned input items; this number can be zero in the
event of an early conflict between an input character and the control string.

If the input ends before the first conflict or conversion, EOF is returned. If the input ends after the first
conflict or conversion, the number of successfully matched items is returned.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\O. Or:

int i; float x; char name[50];
(void) scanf(,,%2d%f%*d %[0-9]'\ &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar (see
getc (3S» will return a.

SEE ALSO
getc(3S), printf(3S) strtod(3), strtol(3), scanf(3V)

DIAGNOSTICS
These functions return EOF on end of input, and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

scan! cannot read the strings which print/(3S) generates for IEEE indeterminate floating point values.

Sun Release 3.4 Last change: 18 February 1987 347

SCANF(3S) STANDARD 110 LmRARY SCANF(3S)

348

scan/provides no way to convert a number in any arbitrary base (decimal, hex or octal) based on the tradi­
tional C conventions (leading 0 or Ox).

Last change: 18 February 1987 Sun Release 3.4

SETBUF(3S) STANDARD I/O LffiRARY SETBUF(3S)

NAME
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbur(stream, bul)
FILE *stream;
char *bur;

setburrer(stream, bur, size)
FILE *stream;
char *bur;
int size;

setlinebur(stream)
FILE *stream;

int setvbur (stream, bur, type, size)
FlLE *stream;
char *bur;
int type, size;

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered. When an output
stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is
block buffered many characters are saved up and written as a block; when it is line buffered characters are
saved up until a newline is encountered or input is read from stdin. fflush (see fclose(3S» may be used to
force the block out early. Normally all files are block buffered. A buffer is obtained from malloc(3) upon
the first getc or putc(3S) on the file. If the standard stream stdont refers to a terminal it is line buffered. If
the standard stream stderr refers to a terminal it is line buffered.

setbuf can be used after a stream has been opened but before it is read or written. It causes the array
pointed to by buf to be used instead of an automatically allocated buffer. If buf is the NULL pointer,
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h> header
file, tells how big an array is needed:

char buf[BUFSIZ];

setbuffer, an alternate form of setbuf, can be used after a stream has been opened but before it is read or
written. It causes the character array buf whose size is determined by the size argument to be used instead
of an automatically allocated buffer. If buf is the NULL pointer, input/output will be completely unbuf­
fered.

setvbuf can be used after a stream has been opened but before it is read or written. type determines how
stream will be buffered. Legal values for type (defined in <stdio.h» are:

IOFBF causes input/output to be fully buffered.

IOLBF causes output to be line buffered; the buffer will be flushed when a newline is written, the
buffer is full, or input is requested.

IONBF causes input/output to be completely unbuffered. If buf is not the NULL pointer, the array it
points to will be used for buffering, instead of an automatically allocated buffer. Size
specifies the size of the buffer to be used.

setlinebuf is used to change the buffering on a stream from block buffered or unbuffered to line buffered.
Unlike setbuf, setbuffer, and setvbuf, it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by usingfreopen (seefopen(3S».
A file can be changed from block buffered or line buffered to unbuffered by usingfreopen followed by set­
bufwith a buffer argument of NULL.

Sun Release 3.4 Last change: 16 April 1986 349

SETBUF(3S) STANDARD 110 LmRARY SETBUF(3S)

SEE ALSO
fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S), setbuf(3V)

DIAGNOSTICS

NOTE

350

If an illegal value for type or size is provided, setvbuf returns a non-zero value. Otherwise, the value
returned will be zero.

A common source of error is allocating buffer space as an "automatic" variable in a code block, and then
failing to close the stream in the same block.

Last change: 16 April 1986 Sun Release 3.4

SCANF(3V) SYSTEM V COMPATIBILITY ROUTINES SCANF(3V)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf(format [, pointer] . ..)
char *format;

fscanf(stream, format [, pointer] . ..)
FILE *stream;
char *format;

sscanf(s, format [, pointer] . ..)
char *s, *format;

DESCRIPTION
scan[reads from the standard input stream stdin. fscanf reads from the named input stream. sscanf reads
from the character string s. Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control stringformat, described below,
and a set of pointer arguments indicating where the converted input should be stored

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which, except in two cases described
below, cause input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next character of the input stream.
3. Conversion specifications, consisting of the character %, an optional assignment suppressing character

*, an optional numerical maximum field width, an optional) (ell) or h indicating the size of the receiv­
ing variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by *. The
suppression of assignment provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted For all descriptors except "[" and "c", white space leading an input
field is ignored.
The conversion character indicates the interpretation of the input field; the corresponding pointer argument
must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following
conversion characters are legal:
% a single % is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an integer pointer.
u an unsigned decimal integer is expected; the corresponding argument should be an unsigned

integer pointer.
o an octal integer is expected; the corresponding argument should be a integer pointer.
x a hexadecimal integer is expected; the corresponding argument should be an integer pointer.
e,f,g a floating point number is expected; the next field is converted accordingly and stored through the

corresponding argument, which should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits, possibly containing a decimal point, followed by
an optional exponent field consisting of an E or e followed by an optional +, -, or space, followed
by an integer.

s a character string is expected; the corresponding argument should be a character pointer pointing
to an array of characters large enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a white space character.

c a character is expected; the corresponding argument should be a character pointer. The normal
skip over white space is suppressed in this case; to read the next non-space character, use % Is. If
a field width is given, the corresponding argument should refer to a character array, and the indi­
cated number of characters is read.

Sun Release 3.4 Last change: 18 February 1987 381

SCANF(3V) SYSTEM V COMPATIBILITY ROUTINES SCANF(3V)

indicates string data; the normal skip over leading white space is suppressed. The left bracket is
followed by a set of characters, which we will call the scanset, and a right bracket; the input field
is the maximal sequence of input characters consisting entirely of characters in the scanset. The
circumfiex ("), when it appears as the first character in the scanset, serves as a complement opera­
tor and redefines the scanset as the set of all characters not contained in the remainder of the scan­
set string. There are some conventions used in the construction of the scanset. A range of charac­
ters may be represented by the construct first-last, thus [0123456789] may be expressed [0-9].
Using this convention,first must be lexically less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is the first or the last character in the
scanset To include the right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumfiex) of the scanset, and in this case it will not be
syntactically interpreted as the closing bracket. The corresponding argument must point to a char­
acter array large enough to hold the data field and the terminating \0, which will be added
automatically. At least one character must match for this conversion to be considered successful.

The conversion characters d, u, 0, and x may be capitalized or preceded by I or h to indicate that a pointer
to long or to short rather than to int is in the argument list Similarly, the conversion characters e, r, and g
may be preceded by I to indicate that a pointer to double rather than to Boat is in the argument list The I or
h modifier is ignored for other conversion characters.

scan! conversion terminates at EOF, at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is left unread in the input stream.

scan! returns the number of successfully matched and assigned input items; this number can be zero in the
event of an early conflict between an input character and the control string.

If the input ends before the first conflict or conversion, EOF is returned. If the input ends after the first
conflict or conversion, the number of successfully matched items is returned.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\O. Or:

int i; float x; char name [50] ;
(void) scanf(,,%2d%f%*d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar (see
getc (3S» will return a.

SEE ALSO
getc(3S), printf(3V) strtod(3), strtol(3), scanf(3S)

DIAGNOSTICS
These functions return EOF on end of input, and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

scan! cannot read the strings which print/(3V) generates for IEEE indeterminate floating point values.

382 Last change: 18 February 1987 Sun Release 3.4

SCANF(3V) SYSTEM V COMPATIBILITY ROUTINES SCANF(3V)

scan/provides no way to convert a number in any arbitrary base (decimal, hex or octal) based on the tradi­
tional C conventions (leading 0 or Ox).

Sun Release 3.4 Last change: 18 February 1987 383

SETBUF(3V) SYSTEM V COMPATIBILITY ROUTINES SETBUF(3V)

NAME
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbuf(stream, buC)
FILE *stream;
char *buf;

setbuffer(stream, buf, size)
FILE *stream;
char *buf;
int size;

setlinebuf(stream)
FILE *stream;

int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION

384

The three types of buffering available are unbuffered, block buffered, and line buffered. When an output
stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is
block buffered many characters are saved up and written as a block; when it is line buffered characters are
saved up until a newline is encountered or input is read from stdin. !flush (see /close(3S» may be used to
force the block out early. Normally all files are block buffered. A buffer is obtained from malloc(3) upon
the first getc or pute (3S) on the file.

By default, output to a terminal is line buffered and all other input/output is fully buffered

setbuf can be used after a stream has been opened but before it is read or written. It causes the array
pointed to by buf to be . used instead of an automatically allocated buffer. If but is the NULL pointer,
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h> header
file, tells how big an array is needed:

char buf[BUFSIZ];

setbuffer, an alternate form of setbu/, can be used after a stream has been opened but before it is read or
written. It causes the character array but whose size is determined by the size argument to be used instead
of an automatically allocated buffer. If buf is the NULL pointer, input/output will be completely unbuf­
fered.

setvbuf can be used after a stream has been opened but before it is read or written. type determines how
stream will be buffered. Legal values for type (defined in <stdio.h» are:

_IOFBF causes input/output to be fully buffered.

IOLBF causes output to be line buffered; the buffer will be flushed when a newline is written, the
buffer is full, or input is requested.

IONBF causes input/output to be completely unbuffered. If but is not the NULL pointer, the array it
points to will be used for buffering, instead of an automatically allocated buffer. Size
specifies the size of the buffer to be used.

setlinebuf is used to change the buffering on a stream from block buffered or unbuffered to line buffered.
Unlike setbuJ, setbuffer, and setvbu/, it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using/reopen (see/open(3S».
A file can be changed from block buffered or line buffered to unbuffered by using/reopen followed by set­
bufwith a buffer argument of NULL.

Last change: 16 April 1986 Sun Release 3.4

BWONE(4S) SPECIAL FILES

NAME
bwone - Sun-l black and white frame buffer

SYNOPSIS - SUN-l
device bwoneO at mbmem ? csr OxcOOOO priority 3

DESCRIPTION

BWONE(4S)

The bwone interface provides access to Sun-l black and white graphics controller boards. It supports the
ioctls described infbio(4S).

FILES
IdevlbwonelO-91

SEE ALSO

BUGS

mmap(2), tb(4S), tbio(4S)

Use of vertical-retrace interrupts is not supported.

The video state returned by the FBIOGVIDEO ioctl may be incorrect. It is not possible for the driver to
determine the state of the hardware video enable bit, so it reports the last state stored by the FBIOSVIDEO
ioctl. User processes which map the frame buffer can directly enable or disable the video, unknown to the
driver.

Sun Release 3.4 Last change: 16 January 1987 413

BWTWO(4S) SPECIAL FILES BWTWO(4S)

NAME
bwtwo - Sun-3/Sun-2 black and white frame buffer

SYNOPSIS - SUN-3
device bwtwoO at obmem 1 csr oxrroooooo priority 4
device bwtwoO at obmem 2 csr OxlOOOOO priority 4
device bwtwoO at obmem 3 csr OxffOOOOOO priority 4
device bwtwoO at obmem 4 csr OxffOOOOOO

The first synopsis line given above should be used to generate a kernel for a Sun-3/75 or Sun-3/160; the
second, for a Sun-3/50; the third, for a Sun-3/260; and the fourth, for a Sun-3/110.

SYNOPSIS - SUN-2
device bwtwoO at obmem 1 csr Ox700000 priority 4
device bwtwoO at obio 2 csr OxO priority 4

The first synopsis line given above should be used to generate a kernel for a Sun-2/120 or Sun-2/170; the
second, for a Sun-2/50 or Sun-2/160.

DESCRIPTION

FILES

The bwtwo interface provides access to Sun monochrome memory frame buffers. It supports the ioctls
described injbio(4S).

If Bags Oxl is specified, frame buffer write operations are buffered through regular high-speed RAM. This
"copy memory" mode of operation speeds frame buffer accesses, but consumes an extra 128K bytes of
memory. Only the Sun-3/50, Sun-3175, and Sun-3/160 support copy memory; on other systems a warning
message will be printed and the flag will be ignored.

Reading or writing to the frame buffer is not allowed - you must use the mnuzp (2) system call to map the
board into your address space.

Idevlbwtwo[O-9]

SEE ALSO
mmap(2), tb(4S), tbio(4S), cgfour(4S)

BUGS
Use of vertical-retrace interrupts is not supported.

414 Last change: 16 January 1987 Sun Release 3.4

CGFOUR(4S) SPECIAL FILES CGFOUR(4S)

NAME
cgfour - Sun-3 color memory frame buffer

SYNOPSIS - SUN-3
device cgfourO at obmem 4 csr

DESCRIPTION

FILES

The cgfour is a color memory frame buffer with a monochrome overlay plane and an overlay enable plane
implemented on the Sun-3/110 and Sun-3/160. It provides the standard frame buffer interface as defined in
jbio(4S).

In addition to the ioctls described under jbio (4s), the cgfour interface responds to two cgfour-specific
colormap ioctls, FBIOPUTCMAP and FBIOGETCMAP. FBIOPUTCMAP returns no information other than
success/failure via the ioctl return value. FBIOGETCMAP returns its information in the arrays pointed to by
the red, green, and blue members of its tbcmap structure argument; fbcmap is defined in < sunljbio.h> as:

struct tbcmap {

};

int
int
unsigned char
unsigned char
unsigned char

index;
count;
* red;
* green;
*blue;

/* first element (0 origin) *1
1* number of elements *1
/* red color map elements */
1* green color map elements *1
1* blue color map elements *1

The driver uses color board vertical-retrace interrupts to load the colormap.

IdevlcgfourO

SEE ALSO
mmap(2), fbio(4S)

Sun Release 3.4 Last change: 31 March 1987 415

CGONE(4S) SPECIAL FaES CGONE(4S)

NAME
cgone - Sun-l color graphics interface

SYNOPSIS - SUN-2
device cgoneO at mbmem ? csr OxecOOO priority 3

DESCRIPTION

FILES

The cgone interface provides access to the Sun-l color graphics controller board, which is normally sup­
plied with a 13" or 19" RS170 color monitor. It provides the standard frame buffer interface as defined in
fbio(4S).

It supports the FBIOGPIXRECT iocd which allows SunWindows to be run on it; see jbio(4S)

The hardware consumes 16 kilobytes of Multibus memory space. The board starts at standard addresses
OxESOOO or OxECOOO. The board must be configured for interrupt level 3.

/dev/cgone[O-9]

SEE ALSO
mmap(2), fbio(4S)

BUGS
Use of color board vertical-retrace interrupts is not supported.

416 Last change: 16 September 1985 Sun Release 3.4

FBIO(4S) SPECIAL FILES FBIO(4S)

NAME
tbio - general properties of frame buffers

DESCRIPTION
All of the Sun frame buffers support the same general interface. Each responds to a FBIOGTYPE ioctl
which returns information in a structure defined in < sunlfbio.h>:

struct tbtype{
int tb_type; /* as defined below */
int tb_height; /* in pixels */
int tb_width; /* in pixels */
int fb_depth; /* bits per pixel */
int fb _ crnsize; /* size of color map (entries) */
int fb_size; /* total size in bytes */

};

#define FBTYPE SUNIBW 0
#defineFBTYPE SUNICOLOR 1
#define FBTYPE SUN2BW 2
#define FBTYPE SUN2COLOR 3
#define FBTYPE SUN2GP 4
#define FBTYPE SUN4COLOR 8

Each device has an FBTYPE which is used by higher-level software to determine how to perform raster-op
and other functions. Each device is used by opening it, doing an FBIOGTYPE ioctl to see which frame
buffer type is present, and thereby selecting the appropriate device-management routines.

Full-fledged frame buffers (that is, those that run SunWindows) implement an FBIOGPIXRECf ioctl, which
returns a pixrect. This call is made only from inside the kernel. The returned pixrect is used by win(4S)
for cursor tracking and colormap loading.

FBIOSVIDEO and FBIOGVIDEO are general-purpose ioctls for controlling possible video features of frame
buffers. They are defined in <sunlfbio.h> . These ioctls either set or return the value of a flags integer. At
this point, only the FBVIDEO _ ON option is available, controlled by FBIOSVIDEO. FBIOGVIDEO returns the
current video state.

The FBIOSA TIR and FBIOGA TTR ioctls allow access to special features of newer frame buffers. They use
the following structures as defined in <sunlfbio.h>:

Sun Release 3.4

#define FB ATIR NDEVSPECIFIC 8
4

/* no. of device specific values */
/* no. of emulation types */

- -
#define FB A TIR NEMUTYPES - -

struct fbsattr {
int flags; /* misc flags */

#define FB _ATIR _ AUTOINIT 1 /* emulation auto init flag */
#define FB_ATIR_DEVSPECIFIC 2 /* dev. specific stuff valid flag */

int emu_type; /* emulation type (-1 if unused) */
int dev _specific[FB _ ATI'R _ NDEVSPECIFIC]; /* catchall */

};

struct fbgattr {
int real_type; /* real device type */
int owner; /* PID of owner, 0 if myself */
struct tbtype tbtype; /* tbtype info for real device */
struct fbsattr sattr; /* see above */
int emu_types[FB _ATI'R_NEMUTYPES]; /* possible emulations */

/* (-1 if unused) */
};

Last change: 16 January 1987 429

FBIO(4S) SPECIAL FILES FBIO(4S)

SEE ALSO
mmap(2), bwone(4S), bwtwo(4S), cgone(4S), cgtwo(4S), cgfour(4S), gpone(4S), tb(4S), win(4S)

BUGS
FBIOSATTR and FBIOGA'ITR are only supported by the cgfour(4S) frame buffer.

The FBVIDEO _ON ft.ag my be incorrect for Sun-! black and white frame buffers; see bwone(4S).

430 Last change: 16 January 1987 Sun Release 3.4

VP(4S) SPECIAL FILES VP(4S)

NAME
vp - Ikon 10071-5 Versatec parallel printer interface

SYNOPSIS - SUN-2
device vpO at mbio ? csr

DESCRIPTION

FILES

BUGS

This Sun interface to the Versatec printer/plotter is supported by the Ikon parallel interface board, a word
DMA device, which is output only.

The Versatec is normally handled by the line printer spooling system and should not be accessed by the
user directly.

Opening the device ldev/vpO may yield one of two errors: ENXIO indicates that the device is already in
use; EIO indicates that the device is offline.

The printer operates in either print or plot mode. To set the printer into plot mode you should include
<vcrnd.h> and use the wctl (2) call

ioctl(f, VSETSTA'IE, plotmd);

where plotmd is defined to be

int plotmdD = { VPLOT, 0, 0 };

When going back into print mode from plot mode you normally eject paper by sending it an EOT after put­
ting into print mode:

/dev/vpO

int prtmdD = { VPRINT, 0, 0 };

f1lush(vp);
f = fileno (vp);
ioctl(f, VSETSTA'IE, prtrnd);
write(f, "\04", 1);

If you use the standard i/o library on the Versatec, be sure to explicitly set a buffer using setbuf, since the
library will not use buffered output by default, and will run very slowly.

Writes must start on even byte boundaries and be an even number of bytes in length.

Sun Release 3.4 Last change: 16 September 1985 507

VPC(4S) SPECIAL FnES VPC(4S)

NAME
vpc - Systech VPC-2200 Versatec printer/plotter and Centronics printer interface

SYNOPSIS - SUN-2
device vpcO at mbio ? csr Ox480 priority 2
device vpcl at mbio ? csr OxSOO priority 2

DESCRIPTION

FILES

BUGS

508

This Sun interface to the Versatec printer/plotter and to Centronics printers is supported by the Systech
parallel interface board, an output-only byte-wide DMA device. The device has one channel for Versatec
devices and one channel for Centronics devices, with an optional long lines interface for Versatec devices.

Devices attached to this interface are normally handled by the line printer spooling system and should not
be accessed by the user directly.

Opening the device /dev/vpcO or /dev/lpO may yield one of two errors: ENXIO indicates that the device is
already in use; EIO indicates that the device is offline.

The Versatec printer/plotter operates in either print or plot mode. To set the printer into plot mode you
should include <vcmd.h> and use the ioctl (2) call:

ioctl(f, VSETSTA TE, plotmd);

where plotmd is defined to be

int plotmd[] = { VPLOT, 0, 0 };

When going back into print mode from plot mode you normally eject paper by sending it an EOT after put­
ting into print mode:

int prtmd[] = { VPRINT, 0, 0 };

ftlush(vpc);
f = fileno(vpc);
ioctl(f, VSETSTATE, prtmd);
write(f, "\04", 1);

/dev/vpcO
/devllpO

If you use the standard I/O library on the Versatec, be sure to explicitly set a buffer using setbuf, since the
library will not use buffered output by default, and will run very slowly.

Last change: 30 January 1987 Sun Release 3.4

ACCT(5)

NAME
acct - execution accounting file

SYNOPSIS
#include <syslacct.h>

DESCRIPTION

Fll.E FORMATS ACCT(5)

The acct(2) system call makes entries in an accounting file for each process that terminates. The account­
ing file is a sequence of entries whose layout, as defined by the include file is:

1* @(#)acct.h 1.186107/07 SMI; from UCB 6.183/07/29*1

1*
* Accounting structures;
* these use a comp _ t type which is a 3 bits base 8
* exponent, 13 bit fraction "floating point" number.
*1

typedef u _short comp _ t;

struct acct
{

char ac_comm[10];
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
time t ac_btime;
short ac_uid;
short ac_gid;
short ac_mem;
comp_t ac_io;
dev t ac_tty;
char ac_flag;

};

#define AFORK. 0001
#define ASU 0002
#define ACOMPAT 0004
#define ACORE 0010
#define AXSIG 0020

#ifdef KERNEL
#ifdef SYSACCT
struct acct
struct vnode
#else
#define acctO
#endif
#endif

acctbuf;
*acctp;

1* Accounting command name *1
1* Accounting user time *1
1* Accounting system time *1
1* Accounting elapsed time */
1* Beginning time *1
1* Accounting user 10 */
1* Accounting group ID *1
1* average memory usage */
1* number of disk 10 blocks */
1* control typewriter *1
1* Accounting flag */

1* has executed fork, but no exec */
1* used super-user privileges *1
1* used compatibility mode */
1* dumped core */
1* killed by a signal */

If the process does an execve (2), the first 10 characters of the filename appear in ac _ comm. The accounting
flag contains bits indicating whether execve (2) was ever accomplished, and whether the process ever had
super-user privileges.

SEE ALSO
acct(2), execve(2), sa(8)

Sun Release 3.4 Last change: 15 January 1983 521

ALIASES(5) FILE FORMATS ALIASES (5)

NAME
aliases, addresses, forward - addresses and aliases for sendrnail(8)

SYNOPSIS
letc/passwd
lusrlIib/a6ases
lusrlIib/a6ases.dir
lusrlIib/a6ases.pag
-/.forward

DESCRIPTION
These files contain mail addresses or aliases, recognized by sendmail (8), for the local host:

/etclpasswd Mail addresses (usemames) of local users.

/usr/lib/aliases Aliases for the local host, in ASCII format. This file can be edited to add, update, or
delete local mail aliases.

/usr/lib/aliases.{dir.pag)

-Iforward

The aliasing information from lUST/lib/aliases. in binary, dbm(3X) format for use by
sendmail(8). The program newaliases(8), which is invoked automatically by send­
mail (8), maintains these files.

Addresses to which a user's mail is forwarded (see Automatic Forwarding, below).

In addition, the Yellow Pages aliases map mail. aliases contains addresses and aliases available for use
across the network.

ADDRESSES

522

As distributed, sendmail (8) supports the following types of addresses:

• Local usemames. These are listed in the local host's letclpasswd file.

• Local filenames. When mailed to an absolute pathname, a message can be appeneded to a file.

• Commands. If the first character of the address is a vertical bar, (I), sendmail (8) pipes the message
to the standard input of the command the bar precedes.

• DARPA-standard mail addresses of the form:

name@domain

H domain does not contain any dots (.), then it is interpreted as the name of a host in the current
domain. Otherwise, the message is passed to a mailhost that determines how to get to the specified
domain. Domains are divided into subdomains separated by dots, with the top-level domain on the
right Top-level domains include:

.COM Cornmerical organizations .

. EDU Educational organizations .

. GOV Government organizations .

. MIL Military organizations.

For example, the full address of John Smith could be:

js@jsmachine'podunk-U.EDU

if he uses the machine named "jsmachinett at Podunk University.

• uucp(IC) addresses of the form:

... [host!]host!username

These are sometimes mistakenly referred to as ttUsenet" addresses. uucp(IC) provides links to
numerous sites throughout the world for the remote copying of files.

Last change: 13 November 1986 Sun Release 3.4

ALIASES(5) FILE FORMATS ALIASES (5)

Other site-specific forms of addressing can be added by customizing the sendmail configuration file. See
the sendmml(8), and Sendmail Installation and Operation in System Administration/or the Sun Worksta­
tion for details. Standard addresses are recommended.

ALIASES
Local Aliases

lusr/lib/aliases is formatted as a series of lines of the form

name: address[, address]

name is the name of the alias or alias group, and address is the address of a recipient in the group. Aliases
can be nested. That is, an address can be the name of another alias group. Lines beginning with white
space are treated as continuation lines for the preceding alias. Lines beginning with # are comments.

Special Aliases
An alias of the form:

owner-aliasname: address

directs error-messages resulting from mail to alias-name to address, instead of back to the person who sent
the message.

An alias of the form:

aliasname: :include:pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname alias. This allows a
private list to be maintained separately from the aliases file.

YP Domain Aliases
Normally, the aliases file on the master yP server is used for the mail. aliases yP map, which can be made
available to every yP client Thus, the lusrlliblaliaseS* files on the various hosts in a network will one day
be obsolete. Domain-wide aliases should ultimately be resolved into usernames on specific hosts. For
example, if the following were in the domain-wide alias file:

jsmith:js@jsmachine

then any yP client could just mail to "jsmith" and not have to remember the machine and user name for
John Smith. If a yP alias does not resolve to an address with a specific host, then the name of the yP

domain is used. There should be an alias of the domain name for a host in this case. For example, the
alias:

j smith: root

sends mail on a yP client to "root@podunk-u" if the name of the yP domain is "podunk-u".

Automatic Forwarding
When an alias (or address) is resolved to the name of a user on the local host, sendmail checks for a for­
ward file, owned by the intended recipient, in that user's horne directory, and with universal read access.
This file can contain one or more addresses or aliases as described above, each of which is sent a copy of
the user's mail.

Care must be taken to avoid creating addressing loops in the forward file. When forwarding mail between
machines, be sure that the destination machine does not return the mail to the sender through the operation
of any yP aliases. Otherwise, copies of the message may "bounce." Usually, the solution is to change the
yP alias to direct mail to the proper destination.

A backslash before a usernarne inhibits further aliasing. For instance, to invoke the vacation (1) program,
user js creates a forward file that contains the line:

\js, "I/usr/ucb/vacation js"

Sun Release 3.4 Last change: 13 November 1986 523

ALIASES(5) FILE FORMATS ALIASES(5)

so that one copy of the message is sent to the user, and another is piped into the vacation(l) program.

SEE ALSO

BUGS

524

newaliases(8), dbm(3X), sendmall(8), uucP{IC), vacation(l)

System Administrationjor the Sun Workstation

Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000 characters. Nested
aliases can be used to circumvent this limit.

Last change: 13 November 1986 Sun Release 3.4

